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Abstract
Mining high-quality datasets of security defects is important for
cybersecurity. In this paper, we focus on mining a dataset of reviews
that discuss potential security defects in code or other artifacts.
Mining such datasets often involves labeling, and this is challenging
because security defects are rare.

We investigate the use of active learning with a fine-tuned large
language model to make the mining and labeling of such datasets
more effective. Our simulations demonstrate that active learning
can increase the effectivity of human annotators by a factor of 13.
This means we can produce datasets with 13 times more defects
than found in random samples of the same size. We conducted
an empirical study on over four million unlabeled reviews from
GitHub, showing that active learning increases the effectiveness
by a factor bigger than 6. In total, 246 out of 1298 labeled reviews
can be identified as discussing security defects. We do not depend
on a keyword list for upfront candidate selection but dynamically
evolve an LLM for this.

Our work holds the potential to inspire future research in this
area, resolving rare class and imbalance problems at the root where
they appear, by adjusting the mining and labeling of the datasets.
Our final dataset and model are publicly available.

Keywords
Security defects, simulation, active learning, code review, dataset
curation, cybersecurity, manual labeling, empirical study.

1 Introduction
Mining high-quality datasets of security defects is important for
cybersecurity [5]. In this paper, we focus on mining a dataset of
code reviews that discuss potential security defects, as shown in
Figure 1. These reviews can serve as a proxy for detecting actual
security defects in the code hereafter. However, mining often in-
volves labeling the security defects. This is challenging because
security defects are very rare [1, 7, 23]. They are so rare that when
randomly labeling within the capabilities of a human, it is likely
to find nothing. We labeled 100 random reviews from our target
dataset of over four million unlabeled reviews from GitHub and
found nothing.

Examples of the Problem. Related work reports the same prob-
lem. The authors of [7] say that ‘Being a manual effort, we could not
inspect the entire initial dataset.’ Consequently, they attempted ran-
dom sampling, which proved ineffective, and eventually switched
to a keyword-based filter to select candidates for the manual label-
ing. Keyword-based filtering is a common approach to make the

labeling more effective, but it also limits the final dataset by the
filter. Table 1 summarizes numbers for the related work.

Table 1: Our Contribution: No keyword list but still identifica-
tion rates acceptable for manually labeling of code reviews.

Study Total (R) Filtered by Labeled Identfication Rate
Reviews Keywords (relative) (total)

[23] 432,585 yes 20,995 2.6% 614
[7] 60,655 yes 1,155 6.1% 71
[1] 38,004 yes 882 19.0% 171
[18] ? yes ? ? 516
Our data 4,191,892 no 1298 19% 246
Our sim. 1,000,000 no 4,000 1.7% - 23.2%

Research Questions. We investigate the use of active learn-
ing [21, 22] with a fine-tuned large language model (LLM) [14] to
make the mining and labeling of such datasets more effective. We
aim to avoid the limitations of a keyword list for candidate selection
but keep its benefits, saving human resources during labeling.

• RQ1: Can active learning with LLMs save human re-
sources when labeling reviews on security defects?

• RQ2: Can we avoid a keyword list by dynamically
training an LLM for candidate selection instead?

Short Answer. We show that active learning with an LLM ad-
dresses the limitations of candidate selection dynamically, selecting
the most informative instances for labeling as the classifier evolves.

Our simulations demonstrate that active learning can increase
the effectivity of human annotators by a factor of 13, from 1.7% to
23.2%, producing datasets with 13 times more defect labels than in
random samples of the same size.

Guided by these simulations, we conducted an empirical study
on an unlabeled target dataset of over four million reviews from
GitHub with a conservative estimate of the average probability
of security defects being below 2.8%. We demonstrate that with
active learning, 246 out of 1298 labeled reviews can be identified to
discussing security defects. This corresponds to an identification
rate of 19% and increases human labeling effectiveness by a factor
bigger than 6. We do not use a fixed keyword list but evolve an
LLM dynamically.

Scope and RelatedWork. The rareness of security defects often
causes imbalanced datasets. This paper proposes and evaluates
a process to mine and label a dataset that is less imbalanced.
We thereby resolve the problem of imbalance at its root. We do not
suggest a method to rebalance an existing dataset, nor try to better
train on imbalanced data, outperforming other classifiers. Such
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ideas solve different problems that follow, making a comparison
with the corresponding state-of-the-art unsuitable.

Previous work that creates datasets has explored active learning,
partially with LLMs, in various contexts, but not specifically for
security defects in code reviews [4, 10, 20, 24, 25]. On the other
hand, research focused on security defects discussed in code reviews
without employing active learning with LLMs includes [1, 7, 8, 18,
23]. This paper bridges the gap between these two areas.

Data Availability.

• DOI: https://doi.org/10.6084/m9.figshare.28303904
• GitHub: https://github.com/johanneshaertel/EASE_2025_

active_learning_LLM

Roadmap. The paper starts with a motivation for detecting
security defects in code reviews in Sec. 2. We then provide back-
ground information on active learning in Sec. 3. Next, we describe
our study design to evaluate active learning in Sec. 4. We present
our simulation results in Sec. 5 and the empirical study in Sec. 6.
We discuss a final quality assurance of our dataset and the threats
to validity in Sec. 7 and 8. We discuss related work in Sec. 9 and
conclude in Sec. 10.

2 Motivation
In this paper, we focus on mining a dataset of code reviews that
discuss potential security defects, as shown in Figure 1. The core
challenge in this mining process is the resource-intensive nature of
manual labeling. We now motivate why and how we address this
challenge by active learning and large language models (LLMs).

2.1 Labeling Security Defects
Several works classify and label security defects in software-related
artifacts [3, 9, 19, 27, 28]. Typically, these studies begin by identi-
fying a set of unlabeled observations, denoted as R, where they
suspect important information on security defects. This can include
code, commit messages, issues, pull requests, or reviews.

Subsequently, authors label these observations as either related
to security defects or not. Depending on the exact information
searched, we might face different labeling guidelines, as exemplified
by the open coding in [23]. The process of labeling mostly ends
with a categorical decision for each or some of the observations in
R. The labeling of our study is comparable to [1, 7, 8, 18, 23], which
search for text on potential security defects in code reviews.

Eventually, this labeled data is used to train a model that can
predict if a new observation includes a security defect or not [5,
16]. Such models can be integrated into tools, such as IDEs, to
automatically warn of security defects, or to continuously monitor
open-source data on GitHub. The quality of labels is crucial [5].

2.2 Labeling Security Defects in Code Reviews
In this work, we focus on a specific type of data: natural language
code reviews. We check if such reviews discuss potential security
defects in code or other artifacts, as previously explored in [1, 7,
8, 18, 23]. We use the term ‘potential’ because a review does not
necessarily provide enough context to prove the existence of a
security defect; rather, they discuss why something might be a

Figure 1: What do we search for? The review by piotrrzysko
discusses a potential security defect on confidentiality.

security defect. These reviews can serve as a proxy for detecting
actual security defects in the code hereafter.

We show an example from our empirical study in Fig. 1, illustrat-
ing the problem of logging sensitive information. The arguments
around such leakage are crucial and may be used beyond code.

2.3 The Problem: Security Defects are Rare
Manual labeling remains the predominant practice for natural lan-
guage datasets like the one we focus on [1, 7]. However, Biase et
al. [7] highlighted the inefficiency of manually labeling defects
in randomly selected candidates. They eventually switched to a
keyword-based selection of candidates.

This inefficiency comes from the fact that security defects are
rare. In general, this is referred to as a rare-class, rare-label, or im-
balance problem. In our study, we conducted a simple experiment
to show this. We labeled 100 random candidates and detected no
security defects. Based on this, we estimate that the average prob-
ability of defects must be below 2.8% in our target dataset. The
statistical model used for this estimate is available online.

Given our goal to mine a dataset rich in security defects and
the extremely low probability of encountering them below 2.8%,
scaling the labeling process to manageable dimensions for humans
becomes impractical. Thus, we require an approach to increase the
identification rate of defects to a more acceptable level.

2.4 Candidate Selection
The typical approach for natural language is to reduce to candidates
selected by keywords, excluding or including observations with
specific terms. See Table 1 for examples. This narrows down a
huge unlabeled dataset R into a smaller ‘candidates’ subset R𝐶 with
hopefully a higher average probability of defects, suitable for being
labeled manually. Identification rates can rise to acceptable levels
of 6.1% or 19%, as reported by related works shown in Table 1.

To give an impression of keywords, we provide those used by
Biase et al. [7]: buffer, cast, command, cookie, crypto, emismatch,
exception, exec, form, field, heap, injection, integer, ondelete, out of
memory, overflow, password, printf, privilege, race, random, sanitize,
security, sensitive, sql, URL, use-after-free, vulnerability, xhttp, xml.

Authors acknowledge that the use of these keywords is a threat
to the study design, as it may result in missing security defects, if
the keyword list is too narrow. If the keyword list is too broad, iden-
tification rates get low, and the labeling effort becomes excessive.

https://doi.org/10.6084/m9.figshare.28303904
https://github.com/johanneshaertel/EASE_2025_active_learning_LLM
https://github.com/johanneshaertel/EASE_2025_active_learning_LLM
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Figure 2: Active Learning

2.5 Dynamic Candidate Selection by Active
Learning

Keyword lists are therefore often refined iteratively, which can
be considered an instance of active learning as shown in Fig. 2. It
is not always called like this and there are many variants for the
refinement of a keyword list, see the examples [1, 23].

At its core, we don’t need to know all the keywords in advance.
The term ‘password’, for instance, might frequently be used together
with ‘sensitive’, so we can add one term to our keyword list if we
encounter another. It is a form of correlation that we use to refine
the keywords iteratively. On the contrary, if a term leads to many
false positives, we exclude it.

In general, these keyword lists are classifiers that we use to select
candidates for labeling. After each labeling iteration, we improve
the classifier by ‘retraining’ it on the labels obtained so far and
repeat the process. We may also use more advanced versions of this
classifier, as explored in this paper.

2.6 Improved Candidate Selection by LLMs
Such keyword lists are a pre-LLM method. They are inherently lim-
ited in capturing the complexity of natural language. For example,
they mostly operate on bags and not on sequences of words.

In this paper, we replace them by dynamically fine-tuning a lan-
guage model, creating a classifier with several advantages over the
keywords. Our approach captures nuanced and complex patterns
that cannot be encoded as keywords. Additionally, we benefit from
the language model’s ability to transfer knowledge. For instance,
the co-occurrence of terms like ‘password’ and ‘sensitive’ might
already be understood by the base model, even without analyzing
a single security defect.

We illustrate the evolution of our classifier in Table 2. For in-
stance, a review (R2) saying ‘This code might provide access to sensi-
tive data.’ was initially not classified correctly as a review discussing
a security defect. However, after seven iterations and the classifier
learning from the feedback loop, the review was accurately clas-
sified. We achieved this without any manual intervention on the
specifics of the classifier, simply by labeling the selected candidates
on demand of the classifier.

3 Background
We now provide a formal overview of active learning, which we use
to enhance the labeling of security defects. Active learning involves
methods that iteratively train a classifier with, in our case, human

Table 2: Predictions by our evolving LLM classifier over the
active learning iterations.

Iterations LLM Classifier
Review Text M1 M2 M3 M4 M5 M6 M7

(Does the review discuss a pot. security defect?)
R0: Can we refactor
this code to make it
maintainable?

0% 7% 2% 0% 0% 0% 0%

R1: This code enables
an attacker to get ac-
cess to our data.

0% 45% 89% 6% 95% 84% 93%

R2: This code might
provide access to sen-
sitive data.

0% 34% 76% 4% 95% 81% 91%

R3: This might allow
someone to run denial
of service.

0% 53% 23% 2% 11% 77% 80%

R4: We might expose
credentials.

0% 58% 92% 1% 42% 74% 89%

feedback [21, 22]. We denote the entire dataset as R, representing
the unlabeled reviews. The labels, which are costly to obtain, are
produced on demand through interaction with a human.

Algorithm 1 Standard Active Learning Process
1: Initialize R𝐾,0 with an initial labeled dataset
2: Initialize R𝑈 ,0 with the remaining unlabeled dataset
3: for each iteration 𝑖 = 1, 2, . . . do
4: Train modelM𝑖 on R𝐾,𝑖−1 (or take a bootstrap model)
5: Predict labels for R𝑈 ,𝑖−1 usingM𝑖

6: Select candidates R𝐶,𝑖 from R𝑈 ,𝑖−1 by selection metric
7: Obtain true labels for R𝐶,𝑖 by manual labeling
8: Update R𝐾,𝑖 = R𝐾,𝑖−1 ∪ R𝐶,𝑖
9: Update R𝑈 ,𝑖 = R𝑈 ,𝑖−1 \ R𝐶,𝑖
10: end for

3.1 Feedback Loop
We present the pseudocode for the active learning process in Algo-
rithm 1. Active learning operates iteratively, determining in each
iteration the subset of R that will be the next candidate for labeling.
A classifier is employed to select new candidates. This classifier
M is trained on the already labeled data, which is updated in each
iteration. The newly labeled data is added to the dataset used to
train the classifier for the next iteration.

In each iteration 𝑖 , we identify the following subsets:
• R𝐾,𝑖 : The labeled data, where the label is known and used

to train the classifier.
• R𝑈 ,𝑖 : The unlabeled data, where the label is unknown.
• R𝐶,𝑖 : The data candidates for labeling in the iteration.

In certain cases, we may employ a bootstrap model to select
candidates for the first iteration, rather than relying on an initial
labeled dataset R𝐾,0.
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Table 3: Hyperparameter candidate selection

Candidate Selection Metric (𝑝 𝑗 )
Entropy: We select candidates based
on the entropy of the classifier’s pre-
diction.

−∑
𝑙∈𝐿 𝑝 𝑗 (𝑙) log 𝑝 𝑗 (𝑙)

Rare-label: We select those instances
where the classifier is most certain to
be of the rare label.

𝑝 𝑗 (𝑙rare)

Majority-label: For symmetry, we se-
lect those instances where the classi-
fier is most certain to be of the major-
ity label.

𝑝 𝑗 (𝑙majority)

Random: As a baseline, we also ex-
amine random sampling. This method
does not involve the classifier and se-
lects the candidates randomly. We de-
note this by the ‘hash’ of the instance.

hash(𝑝 𝑗 )

3.2 Classifier Training
Active learning needs to train a classifier on the previously labeled
data. Since we are working with natural language, we fine-tune
a language model for our empirical study. For the simulation, we
simplify and restrict to the classification head of the LLM, using a
basic feed-forward neural network for classification.

3.3 Candidate Selection
Given the classifierM𝑖 trained on data from iteration 𝑖 − 1, there
are various strategies to select the next candidates for iteration 𝑖 .
Next to basic exclusion and inclusion mechanisms, active learning
allows us to explore options based on uncertainty. In simple terms,
we can select the instances where the classifier is most uncertain.

Table 3 enumerates such strategies where 𝑝 𝑗 is the prediction of
the classifier M𝑖 for instance 𝑗 , which is a probability distribution
over the labels 𝐿. The classifier predicts the labels of the instances
with unknown labels in R𝑈 ,𝑖−1, which are then filtered by one of
the selection metrics to form the next candidates R𝐶,𝑖 . We select
among the top 𝑘 instances when sorted by metric.

4 Hybrid Methodology
To evaluate the active learning method-design, we adopt a hybrid
methodology, combining a simulation followed by an empirical
study to examine design options (also see [15] and [12]).

Our empirical study works with a single human, the author of
this paper, labeling the reviews from GitHub. This is a real but
unknown data generating process. We can see it as a single func-
tion that produces a label given a review. Our simulation does the
same, but randomly creates possible functions that map inputs to
labels. It thereby creates many random data generating processes
corresponding to possible human judgments. We motivate this as
follows:

• Transparency: Our simulations capture the data generat-
ing processes as code. This is very transparent compared
to a single real-world labeling by a human. It supports a

deeper conceptual understanding of our work, especially re-
garding generalization, reproduction, and modification, and
thereby facilitates constructive criticism in future studies.

• Controllability: While typical methodology to evaluate
method-design operates with hyperparameters specific to
the method, we can examine ‘hyperparameters’ specific to
the problem. We can adjust parameters of the data generat-
ing processes, such as label predictability or correlations,
experimenting in ways that are impossible in a real-world
setting.

• Scalability: The simulation fundamentally differs in how
it scales. The simulation allows repetition of experiments
across different data generating processes. It is not just
limited to folds over a single real-world labeling by a human.
For evaluating design decisions, we think this is crucial.
Simulations repeat until confidence intervals sufficiently
converge, ruling out randomness in the conclusions.

• Plausibility: However, we clearly face the simulation-gap
in our methodology in that the simulation needs to be a
plausible representation of the real-world problem. Not all
insights might be transferable between the simulation and
the empirical study. We highlight differences later and also
discuss this problem in a section on threats to validity.

Informed by the simulation, the empirical study demonstrates the
most promising configurations of active learning in a real setting,
evaluating the method through real and not simulated labeling.

5 Simulation Study
We begin with a simulation study to guide our following up ap-
plication of active learning in a real-world setting. We present the
core assumptions of our simulation in this section. The technical
part, including all the details, can be found online. The simulations
are written in Python and use TensorFlow and Keras.

5.1 Problem Hyperparameters
Our data generating process is the human giving a label. We start
with the hyperparameters specific to this labeling problem we aim
to solve. We cannot influence such parameters in reality but using
the simulation we can prepare for their implications.

We align this simulation with the classification head of the LLM,
using a simple random feed-forward neural network. We make
one of the two output labels a rare class by adjusting biases. We
simulate the unlabeled dataset R, input to the classification head,
using a multivariate normal distribution generating one million
observations. The input R is available to the active learning method.
The labels are missing but can be simulated running the random
data generating process (our artificial human) on input data.

• Problem Structure: We assume that the labels are gener-
ated by a neural network with random weights applied to
random normally distributed input data. We use 20 input
variables and a neural network with 4 randomly assigned
layers, where sizes are 15, 15, 15, and 1. The last layer is
sent through the sigmoid function. We limit the simulation
to two categories and sample the labels from a Binomial
distribution.
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• Imbalance: We produce imbalance by modifying the last
layer of the network. In our experiments, we target an
average imbalance of around 1.7%, ranging between 0% to
4% in repeated simulation runs. For our target data from
GitHub, we know that the imbalance must be below 2.8%.

• Label Predictability: To produce a decision that is not
purely random but predictable, we systematically modify
the standard deviation of the logits before sending them
through the sigmoid function and to the Binomial random
number generator. We scale to a standard deviation of 0.7,
1.0, or 1.3. We later refer to this as low, normal, and high
predictability. We point out that future work should explore
the impact of missing variables which we missed.

• Correlation: We explore the impact of a correlation struc-
ture on the input data. To simulate correlation, we use the
Cholesky decomposition of a random correlation matrix,
that is multiplied with the random input data.

5.2 Methods Hyperparameters
The next hyperparameters are specific to the applied methods. We
explore four candidate selection methods described in Sec. 3.3,
including the baseline of selecting candidates randomly. This is the
most common subset of candidate selections also explored in [10,
20, 24, 25]. Additionally, we examine two parameters indirectly
related to candidate selection.

• Iteration Increment: In each iteration, a fixed number of
candidates is selected and manually labeled. While this step
size does not directly influence the labeling effort, it might
affect identification rates and thereby the effectiveness of
labeling. We examine adding 40 or 200 new observations
each iteration, up to reaching 4000 observations in total.

• Epochs forModel Fitting:We explore the impact of model
fitting in terms of the number of epochs used. We test 5, 10,
and 30 epochs to determine if early stopping is necessary
to avoid overfitting.

5.3 Evaluation Metrics
We do the comparison of methods in terms of identification rates of
security defect labels, which is our the simulated rare class. This is
the relative number of security defect labels in the dataset of labeled
observations until this point. It allows us to determine and compare
the effectiveness of each method throughout the iterations, relative
to the number of labeled candidates. We also measure the loss of
the model on the entire dataset R.

5.4 Results
We now discuss the central guidance derived from the simulation
study. Throughout this section, shaded areas represent 90% confi-
dence intervals for the given values. These intervals result from
multiple simulation runs. We only focus on the number of security
defect labels that is our rare class. The number of non-security
defect labels is complementary for two simulated categories. When-
ever applicable, the plots indicate the number of simulation repeti-
tions in the bottom-right corner.
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Figure 3: Hyperparameter candidate selection

5.4.1 Candidate Selection. We start with the most important ques-
tion: can any of the candidate selection methods outperform the
baseline of random sampling? Figure 3 illustrates the identification
rate as the number of labeled observations increases through ac-
tive learning iterations. We compare different candidate selection
methods. Note that iterations corresponds to the number of labeled
observations.

• Random: Recall that we have an imbalance, with around
1.7% of R being instances of the rare-label. Random sam-
pling converges towards an identification rate of 1.7%. This
is expected and disqualifies random sampling for our pur-
pose.

• Majority: Actively sampling for the majority label per-
forms even worse. We include it for symmetry reasons.

• Rare-lables and Entropy: Selecting candidates by sam-
pling for the rare security defect labels or for entropy clearly
works. After 4000 observations are added to the dataset
by the active learning iterations, rare-label sampling re-
sults in an overall identification rate of 11.1%, and entropy
sampling results in an identification rate of 8.4%. Both are
significantly better than random sampling.

We emphasize that the identification rate evolves over the itera-
tions, which is also shown in the plots. Initially, when the model is
not yet trained, the identification rate is low. As the model improves,
the identification rate increases.

In the empirical study, this insight guides us to use a mixture of
both candidate selection methods (entropy and rare-label).

5.4.2 Correlation. We observe that correlation slightly affects iden-
tification rates, but active learning methods remain effective regard-
less of the presence of correlation. Our confidence intervals are still
too large to make a definite statement on what is better. We refer
to the corresponding plots and data that can be found online.

5.4.3 Iteration Increment. Fig. 4 shows the impact of the iteration
increment, which is the number of new candidates we label in each
iteration, on the identification rate. We observe a slight perfor-
mance difference depending on the increment step size. Smaller
step sizes appear to be better, as they lead to faster feedback and
better decisions on what to label next. However, there is a tradeoff,
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Figure 4: Hyperparameter iteration increment
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Figure 5: Hyperparameter label predictability

as each iteration can incur a high cost for fitting and applying the
classifier to a huge R.

In the empirical study, this guides us to avoid increment sizes much
larger than 200.

5.4.4 Predictability. Figure 5 shows the impact of label predictabil-
ity on the identification rate. The plot demonstrates that predictabil-
ity significantly affects the performance of active learning methods.
With low predictability, active learning performs almost similarly to
random sampling, with 3.1%. Conversely, with high predictability,
the method achieves identification rates up to 23.2%.

In the empirical study, this insight guides us to continuously assess
predictability. We evaluate the model in each iteration to ensure its
efficiency. In cases of low predictability, we may need to adjust the
model or the input data to improve performance.

5.4.5 Model Fitting. Model fitting can play a crucial role, which we
examine by varying the number of training epochs. Figure 6 shows
the impact of epochs on the identification rate for the rare-label
candidate selection method and without correlation present. We
point out that there appears to be an interaction with such problem
hyperparameters, which we did not yet explore. We refer to the
online data.

The results show the typical overfitting and underfitting phenom-
ena. With 10 epochs, we achieve an overall good performance. With

500 1000 1500 2000 2500 3000 3500 4000 4500
Labeled Observations

0.0%

2.0%

4.0%

6.0%

8.0%

10.0%

12.0%

14.0%

16.0%

Id
en

tif
ica

tio
n 

Ra
te

13.5%13.1%

9.0%

141 sim. runs141 sim. runs

Epochs Model Fit
5 epochs
10 epochs
30 epochs

Figure 6: Hyperparameter epochs
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Figure 7: Hyperparameter candidate selection for loss on R

5 epochs, we underfit in the first iterations, but then the method
improves with a steep increase in the identification rate around
1500 observations. With 30 epochs, we perform well in the first
iterations, but then overfit.

Cross-validation can help assess overfitting. While we used early
stopping by an adjusted number of epochs, other methods to pre-
vent overfitting, such as regularization, dropout, or reducing model
size, may also be effective. Our results also leave space for future
adjustments of epochs as a function of the number of iterations.

In the empirical study, this complexity guides us to evaluate the
model on a separate test set in every iteration, as is common in
cross-validation, and to avoid relying solely on the training loss.

5.4.6 Loss Full Dataset. Last, we examine the loss of the evolving
model on the entire datasetR of onemillion observations in Figure 7.
We limited to problems with a high predictability, as there appears
to be another interaction effect that we did not yet explore in depth.

The insights related to this plot are surprising, as the candidate
selection methods that recover the most rare-labels, do not cause
the lowest overall loss in the first iterations. The plot indicates that
if we aim to minimize the overall loss, we should start selecting
the majority labels. However, the loss of all candidate selection
methods converge after sufficient iterations. We cannot tell yet
because confidence intervals are too wide, and we suspect model
fitting epochs to also impact these results, but there is the possibility
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that in later iterations the rare-label selection method might be
better. This calls for further investigation.

6 Empirical Study
Informed by the simulation, we now turn towards reality, where
we evaluate the best configurations of active learning we found to
label real security defects discussed in code reviews from GitHub.

6.1 Data Collection and Processing
We collect pull requests and their reviews using the GitHub API,
referring to this raw data as R.

To achieve this, we select random repositories from GitHub and
download all pull requests and reviews for each repository. We
navigate around well-known technical limitations of the GitHub
API (see [6]). The query used to select a repository randomly is
limited by filters. A repository needs to have i) a minimum of 100
stars to ensure quality, ii) a minimum of 10 pull requests to ensure
active usage of pull requests, and iii) use Java as the main language,
which we currently focus on. Such filters are typical [2, 6]. We
collect and store all pull requests and reviews for the repository
as line-delimited JSON. We have collected 4,191,892 pull request
reviews from 4,937 distinct repositories and 492,266 distinct pulls.
For the empirical study, this data is limited to reviews attached to a
Java file. However, the online material contains all crawled reviews.

6.2 Labeling Guidelines
The author of this paper who has a standard background in software
security performed the labeling to ensure consistency and maintain
iteration speed. The labeling of the candidates for iteration one to
seven was done in the time span of May to July 2024. A second
quality assurance round of was conducted in April 2025 (see Sec. 7).

The labeling instructions are provided in Table 4, which lists the
six labels used in the study along with their descriptions. Previous
studies on security defects in code reviews use closely related labels,
like in [24], asking ‘Whether the review comment is security-related’.

Table 4: Labeling Guidelines

Label Description
Potential Security
Defect

The review discusses a potential secu-
rity defect of code or other artifacts.

No Security De-
fect

The review does not discuss a security
defect of code or other artifacts.

Unclear The relation to a security defect is un-
clear.

Broken The review is a broken link. This is a
technical problem with some of our in-
put data.

Bot The review is written by a bot.
Non-English The review is not written in English.

6.3 Classifiers
6.3.1 Bootstrapping Classifier. In the empirical study, we use a
bootstrapping classifier M1, a simple regex-based tool similar to

a keyword list. It produces the candidates for the initial labeled
dataset R𝐾,1 needed to train model M2. This initial dataset is es-
sential for training our first LLM for active learning.

We intentionally designed this bootstrap classifier to be basic. It
searches only for the keyword secur in the review text, capturing
terms like security, secure, insecure, securely, and insecurely. The
exact implementation is available in the online material. We do
not aim for an exhaustive keyword list, as this is the task for the
subsequent active learning loop with an LLM.

6.3.2 Main Classifier. After bootstrap, we fine-tune RoBERTa [14],
the base variant, an existing language model for sequence classifi-
cation with parameters occupying around 500 MB of GPU memory.
The input to the model is the tokenized text of the review up to
64 tokens. The output is one of the labels shown in Table 4 where
broken links and bots are excluded as they can hardly be predicted.

6.3.3 Loss andOptimizer. Weuse standard categorical cross-entropy
as the loss function for fine-tuning the LLM [11]. Adam [13] is used
for optimization.

6.3.4 Model Configuration and Performance. The simulation guides
us to carefully inspect model performance and prevent overfitting
and underfitting. To tailor this insight to our used model architec-
ture, which is different from the simulation, we explore different
learning rate and epoch combinations. We conducted these addi-
tional experiments before running the actual empirical study using
our target model architecture, but another related dataset borrowed
from [19]. Learning rates around 1𝑒 − 6 and 40 epochs were suc-
cessful. Gray literature also recommends low learning rates for
fine-tuning language models. Using Adam is standard practice.

As a sanity check for the hyperparameters, we apply cross-
validation in every iteration. Our simulation guided us to do this.
Test metrics over epochs while fitting M2, M4 and M6 are shown
in Figure 8. Each line depicts the progress while fitting a single
model, showing the typical U-shaped loss curve when evaluating a
model out-of-sample. We show the test loss and the test precision
(of potential security defect) at k where k is the number of potential
security defect labels in the test set. For the iterations shown, we
stop fitting the model after 40 epochs. The plot shows no signs of
overfitting or underfitting. Moreover, we see clear signs that the
models successfully learn, by a strong decrease in loss and a strong
increase in precision. This also holds for the iterations not shown.

As a side note, since we don’t optimize hyperparameters at this
point, we don’t hold out a validation set (see Goodfellow et al. [11],
page 119, first paragraph). We do a single fold, splitting the dataset
with known labels R𝐾,𝑖 into test (30%) and train set (70%).

6.4 Candidate Selection and Step Size
The simulation suggests using rare-label or entropy candidates. In
the empirical study iterations, we experimented with a combination
of both methods. The specific candidate selection used in each
iteration is shown in Figure 9 as the shaded background.

In the initial iteration, we relied on the bootstrap classifier to
select candidates, which means neither entropy nor rare-label se-
lection was applied. For iterations 2 to 5, we employed a mixture of
entropy and rare-label candidates. In the final iterations, 6 and 7,
we exclusively used rare-label candidate selection.
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Figure 8: Model test set performance forM2, M4 andM6.
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Figure 9: Identification rates for different labels as lines.

We decided on a step size of around 200 candidates per iteration,
ensuring it is not much larger. The step size is shown in Figure 9 by
the distances between the lines indicating each iteration. Broken
links and bots are excluded from our considerations.

6.5 Results
In total, we labeled 1298 reviews in seven iterations (excluding the
122 reviews that are broken links). We provide the labeled data
online. We structure the discussion along our research questions.

6.5.1 RQ1: Can active learning with LLMs save human resources
when labeling reviews on security defects? We found 246 reviews
discussing security defects, 695 reviews that clearly do not, 276
reviews where the relationship to a security defect is unclear, 10
reviews written by bots, and 71 reviews that are not written in
English. For 122 broken reviews, we could not navigate to the pull
request review on the GitHub webpage. These reviews are not
included in our analysis.

This is an identification rate of 19% for reviews on security de-
fects. If we put this into relation to our estimate of the average
probability of security defects being below 2.8%, this is an increase
in human labeling effectiveness by a factor of more than 6.

We emphasize that identification rates of 19%, which means every
five reviews we find one defect, is a reasonably good result for a
rare-label problem and allows manual labeling. From related work
like [23], we know that rates without keyword-based preselection,
but with random sampling, can fall below 1%. We conclude that
active learning with LLMs can reduce the human effort.

Regarding the different iterations, we observe the following
trends in Figure 9:

• Bootstrapping: In iteration 1, the bootstrapping classifier
delivers good results. Searching for the keyword ‘secur’ is
effective in identifying security defects. This provides a
solid starting point but is limited in scope.

• Iteration 2: In the first active learning iteration, we apply
the model trained on the bootstrapping data for candidate
selection. We use a mixture of entropy and rare-label sam-
pling. This early model is not mature, leading to an increase
in the majority label no security defect. Notably, the model
does not yet predict non-English reviews because it did
not encounter any in the bootstrapping data. Consequently,
no candidates are selected with uncertainty about the lan-
guage. In R𝐾,2, we add a single non-English label, marking
the first occurrence of this label.

• Iteration 3: In iteration 3, we observe a peak in language-
related labels due to the high uncertainty measured by en-
tropy for language candidates by M2. This iteration labels
27 non-English candidates. Identification rate of potential
security defect labels drop further, but the momentum is
reduced.

• Iterations 4 and 5: In iterations 4 and 5, the potential se-
curity defect labels start to plateau. Language-related labels
continue to increase.

• Iterations 6 and 7: In iteration 6, we switch to rare-label
sampling only, since entropy sampling tends to select too
many language-related candidates. This change results in
a clear increase in potential security defect labels and a
decrease in no security defect and non-English labels.

Our conclusion is that rare-label candidate selection ismore efficient
if competing with entropy as we used it. This is because entropy
might also favor other labels in a multi-class classification problem.

6.5.2 RQ2: Can we avoid a keyword list by dynamically training an
LLM for candidate selection instead? Our approach is not limited to
a predefined set of keywords but evolves a classifier from bootstrap-
ping byM1 to a learned LLM classifierM7 over seven iterations.
The question remains whether the classifierM7 surpasses the boot-
strapping classifier M1. The short answer is ‘yes’, only 59% of our
entire dataset can be identified by the bootstrapping classifier.

An illustrative example from the second iteration is (the same as
in Figure 1): "I’m not sure if this should be the default behavior. What
if someone propagates headers with sensitive data? In my opinion,
we should either return an empty map here or give users a param-
eter where they can specify which headers they want to log" (from
repository allegro/hermes, pull 1446). This indicates that the LLM
classifier understands sensitive data and leakage in logging from
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the previous bootstrapping iteration, even if the keyword ‘secur’
that we used for bootstrapping is not in the text.

We examine this phenomenon on example review texts as shown
in Table 2 from the motivation section.

• Review R0 shows a clear no security defect label. The clas-
sifier for iteration 2 still struggles, but after the second
iteration, classification improves.

• Reviews R1, R2, R3, and R4 demonstrate the classifiers’
ability to generalize to new keywords like ‘attacker’, ‘sen-
sitive data’, ‘denial of service’, and ‘exposing credentials’.
None of these are detected by the bootstrapping classifier.

R1 to R4 provide evidence that the LLM evolves over the iterations
and exceeds the capabilities of the bootstrapping classifier.

7 Quality Assurance and Afterthoughts on
‘bigger’ LLMs

After conducting the empirical study, we added a quality assurance
stage to double-check the labels for the final dataset.

For this, we used another LLM, Claude Sonnet version 3.5, to
produce alternative zero-shot classifications for the 1217 reviews
labeled as potential security defect, no security defect, or unclear.
Disagreements were manually reviewed and resolved by the author
of this paper. The code running Claude applies sequential and
parallel test-time scaling [26], using our labeling guidelines as the
system prompt and the review as input. The code calling Claude
and the dataset, including Claude’s reasoning, are available online.

This paper reports on the numbers after quality assurance, though
the differences are minimal. In total, 189 potential security defect
labels remained unchanged by this quality assurance. Complete
details can be reviewed in the final dataset including pre- and post-
quality-assurance labels.

We note that Claude performed surprisingly well. However, scal-
ing its classification to the entire 4-million review dataset seems
infeasible. Extrapolating our cost of approximately 0.04 USD per
Claude classification is 160,000 USD for the full dataset. As an after-
thought, Claude might potentially replace the human in our loop.
However, it cannot replace the active learning with a relatively
cost-efficient ‘smaller’ LLM (we used RoBERTa-base) for scaling
candidate selection to the full 4 million reviews. For one iteration
with 4 million classifications, we only paid around 2 USD on AWS.

8 Threats to Validity
The simulation-gap is one of the central threats to our hybrid
methodology. The simulations of the input data, and the simulation
of the function between input and label, might not represent the
real-world data generating process. However, neural networks are
capable of expressing complex functions and our simulation mostly
aligns with the empirical study. There are no striking differences.

A weakness of our simulation is the absence of missing variables.
While we do not yet know how such variables influence the re-
sults, we assume that it relates to what we called ‘unclear’ in the
empirical study. This uncertainty, potentially induced by missing
variables, calls for a more complex simulation in the future, but
also for experiments with alternative candidate selection methods
that better quantify this uncertainty.

The empirical study was run by a single human annotator, which
may introduce bias in the labeling. To mitigate this, we have been
running a quality assurance step one year after the labeling process,
to assure the maximum quality of the labels in the final dataset.

9 Related Work

9.1 Security Defects in Code Reviews
We start with research on code reviews related to security defects.
None of the following approaches involves active learning.

In [23], authors conduct an empirical study on the reviewing
in the OpenStack and Qt communities. A keyword-based filter for
preselection is applied. One of the conclusions is that ‘with the
proportion less than 1%.’ the fraction of reviews discussing security
defects is vanishing low. Our study might inspire improvements in
labeling in the future.

In [8], authors conduct an empirical study on the effectiveness
of security code review. The presented method does not face the
same scalability problem with labeling we aim to solve. The authors
conducted a manual code review of a small web application. Labels
studied are ‘valid vulnerability’, ‘invalid vulnerability’, ‘weakness’
or ‘out of scope’.

In [18], authors conduct an empirical study on the effectiveness
of peer code review in identifying security defects. The study also
uses a keyword-based approach to filtering and might benefit from
active learning with LLMs as an alternative.

In [7], authors conduct an empirical study on code review for
the case of Chromium. The study focuses on answering questions
like ‘What categories of security issues are often missed or found? ’.

In [1], authors conduct an empirical study on the role of code
review for npm packages. Again, authors use keywords.

9.2 Active Learning for Security Defect Labeling
The following approaches share an understanding of the importance
of active learning for labeling security defects in general. However,
they do not focus on code reviews. All approaches mine and label a
dataset. They are not limited to training a classifier on a potentially
rebalanced and existing dataset.

In [24], Yu et al. aim at limiting the labeling effort. They guide
actively by a support vector machine when classifying security
defects in source code. The evaluation of Yu et al. uses an existing
dataset. They focus on studying incorrect labels and correction
mechanisms. We focus on active learning and LLMs applied to
reviews that are natural language artifacts and might later be used
as proxy for finding defects in code.

Chen et al. publish an application of active learning in [4]. They
do not mention active learning, but an iterative feedback loop is
present. Labeling is guided by an ensemble classifier on multiple
data sources, filtering for observations that are likely to be secu-
rity defects, which is rare-label candidate selection. Conclusions,
however, remain unclear as this study mixes active learning with
self-training in the iterations. Our study shows a clear evaluation
of active learning in simulations and on real data.

Zhang et al. focus using active learning to detect vulnerabilities
using the AST of smart contracts in [25]. Specifically, Zhang et al.
contribute to the reduction of noise in existing incorrect labels.
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In [20], we see the first combination of active learning and LLMs,
similar to ours, for processing cyber threat intelligence (CTI) reports.
The study demonstrates a comparable reduction in manual labeling
effort. However, there are significant differences in unlabeled data
size and type. The authors work on 11,130 sentences from CTI
reports, while we focus on 4,191,892 distinct reviews from GitHub.
The CTI corpus is already specific to security, with a high density
of security related information.

9.3 Supervised-Learning for Security Defect
Detection

We briefly discuss examples of security defect detection without a
feedback loop. Classifier training is a part of active learning.

Authors of [3] describe how they build a better dataset first, using
Bugzilla and Debian security tracker; thereafter, they build a deep
learning model. For the Devign approach, the authors [28] manually
label a dataset previously filtered by security-related keywords, and
afterward a classifier is trained. For the D2A dataset [27], authors
filtering by static analysis, labels are addedmanually, and a classifier
is trained. In [17], authors search CVEs and manually label to create
a dataset and train a classifier on the code and commit messages.

9.4 Self-Supervised Learning or Rebalancing
There is also a large body of work on rebalancing datasets and self-
supervised learning. For our work, it is critical that one classifier, the
LLM, learns from another, the human. This happens by constructing
a shared dataset. In its current form, we consider self-supervised
learning and rebalancing as solutions to how a classifier is built
from a dataset, and therefore as not directly related to our work.

10 Conclusion
We investigated the use of active learning with a fine-tuned large
language model to make the mining and labeling of security defects
more effective. In simulations, we have shown improvements in
labeling by a factor of 13, and in an empirical study, we achieved
a factor of more than 6. This improvement does not depend on
a keyword list for upfront candidate selection, but is rooted in
dynamically evolving an LLM over the process of labeling.

Our work holds the potential to inspire future research in this
area, resolving rare class and imbalance problems at the root where
they appear, by adjusting the mining and labeling of the datasets.
Our final dataset and model are publicly available.
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