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ABSTRACT
APIs can be classified according to the programming domains (e.g.,
GUIs, databases, collections, or security) that they address. Such
classification is vital in searching repositories (e.g., the Maven Cen-
tral Repository for Java) and for understanding the technology
stack used in software projects. We apply hierarchical clustering
to a curated suite of Java APIs to compare the computed API clus-
ters with preexisting API classifications. Clustering entails various
parameters (e.g., the choice of IDF versus LSI versus LDA). We
describe the corresponding variability in terms of a feature model.
We exercise all possible configurations to determine the maximum
correlation with respect to two baselines: i) a smaller suite of APIs
manually classified in previous research; ii) a larger suite of APIs
from the Maven Central Repository, thereby taking advantage of
crowd-sourced classification while relying on a threshold-based ap-
proach for identifying important APIs and versions thereof, subject
to an API dependency analysis on GitHub.We discuss the configura-
tions found in this way and we examine the influence of particular
features on the correlation between computed clusters and base-
lines. To this end, we also leverage interactive exploration of the
parameter space and the resulting dendrograms. In this manner,
we can also identify issues with the use of classifiers (e.g., miss-
ing classifiers) in the baselines and limitations of the clustering
approach.

CCS CONCEPTS
• Software and its engineering→ Software libraries and repos-
itories; Abstraction, modeling and modularity;
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1 INTRODUCTION
The use of APIs (application programming interfaces) or, in fact, the
use of the corresponding libraries and frameworks, is an essential
element of today’s software development. Each API addresses a
certain programming domain, e.g., GUIs, databases, collections, or
security; an API facilitates the reuse of functionality, protocols,
tools, and designs related to the addressed domain. The use of
APIs not only facilitates program quality by relying on reusable,
tested, established, and well-encapsulated functionality—it also
improves program comprehension by being able to find traces of a
well-defined and commonly known interface across many projects.

In practice, developers face the following question time and
again: Should some concern be implemented ‘from scratch’ or rather
with the help of an existing API and, if so, what API options do
exist and how to use the API eventually? In addition to this issue of
API adoption, developers also face related issues of API migration
or retirement. In all these contexts, developers rely on fundamental
techniques for searching APIs [32, 42, 46], classification of APIs [22,
36, 45, 46], API documentation [21, 25], and mining API usage
including patterns thereof [12, 23, 30, 40, 46].

In the present paper, we focus on the classification problem
and we study many alternatives of API clustering and discuss the
correlation between computed clusters and available baselines for
classification. We also examine the influence of different parame-
ters of API clustering on the correlation. The simpler of our two
baselines is a suite of 60 APIs with manual tags for (programming)
‘domains’ available in previous work [36]. We develop a more sig-
nificant baseline (Section 3) as a curated suite of APIs drawn from
the Maven Central Repository (MCR). This repository features two
kinds of crowd-sourced (community-authored) classifiers: more
specific ‘categories’ (e.g., XML processing) and more general ‘tags’
(e.g., XML). Figure 1 illustrates browsing one of MCR’s categories.

Our effort on API clustering is based on a feature model (Sec-
tion 4) which captures the parameters of a versatile hierarchical
clustering approach. Our approach does not only allow us to find
a configuration with the maximum correlation to a given baseline
(Section 5), we can also explore the parameters (Section 6) and
the corresponding clustering (i.e., the dendrograms of hierarchical
clustering) interactively, subject to a web application. Figure 2 vi-
sualizes API clusters for the XML APIs of the smaller baseline. One
can observe that the XML domain is detected and reproduced by
this clustering because all present XML APIs are combined even-
tually and non-XML APIs only appear further up in the merging
process not shown in Figure 2. It is interesting to notice that SAX
and JDOM show stronger similarity when compared to JDOM and
dom4j, even though this grouping does not correlate with the un-
derlying, more refined classification of XML parsing approaches
(push, pull, or in-memory).

In this manner, our approach can also be used to validate existing
classifiers, e.g., those available on MCR, because we can answer the
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Figure 1: BrowsingMCR’s category ‘XML Processing’.

Figure 2: Exploring clustering of XML APIs. The vertical axis
shows the threshold for similarity between merged APIs.

questions whether the right classifiers are applied to all APIs and
how to usefully recommend classifiers; see Section 6 for details. Our
approach to API clustering and the visual exploration in particular
has been inspired by related work on clustering metamodels [4].

Summary of contributions.

• We develop a threshold-based approach for creating a cu-
rated suite of relevant APIs and versions thereof by taking
into account popularity (usage) on GitHub and API version-
ing. To this end, we gather GitHub projects dependencies on
APIs in theMaven Central Repository (MCR) from 2.5 million
POM files on GitHub. We also analyze the API changes be-
tween consecutive versions. MCR’s metadata for categories
and tags (for classification) is added to the curated API suite.

• We develop a feature model for the variability in API cluster-
ing and a method for evaluating configurations by means of
measuring the correlation of clustering with a given baseline
for classification. In this manner, we can determine the con-
figuration with maximum correlation, subject to the enumer-
ation of all configurations generated by the feature model.
Our model admits 2592 configurations.

• We propose an interactive exploration mechanism for API
clustering, subject to appropriate visualization. In this man-
ner, we can also identify issues with the use of classifiers
(e.g., missing classifiers) in the baselines and limitations of
the clustering approach.

The curated API suite, the feature model, the correlation results,
other elements of an overall dataset, and the web application for
exploring API clustering are available online.1

Roadmap of the paper. Section 2 recaps hierarchical clustering.
Section 3 summarizes the methodology for creating the curated
API suite as a baseline. Section 4 introduces the feature model for
variability in API clustering. Section 5 describes the evaluation
of API clustering for all feature model configurations. Section 6
demonstrates interactive exploration of API clustering. Section 7
discusses threats to validity. Section 8 discusses related work. Sec-
tion 9 concludes the paper.

2 HIERARCHICAL CLUSTERING
In this paper, we exercise hierarchical clustering of API versions in
two instances: first for reducing the number of versions to be con-
sidered and second for computing manifestations of API classifiers.

Generally, hierarchical clustering [2, 5, 15] takes a set of elements
as source and constructs a hierarchy of clusters. The hierarchy is
represented as a dendrogram, i.e., essentially a binary classification
tree; see Figure 2 for an illustration. Each node in the tree corre-
sponds to a subset of the source elements; the leaf nodes represent
singleton element sets of the source; a non-leaf node merges the
element sets of its two child nodes; the root represents the complete
set of elements. In Figure 2, the leaf nodes are the APIs such as
{SAX}, {JDOM}, {dom4j}, and {ApacheXML}. The vertical position of
a node in a dendrogram represents the similarity between the two
merged clusters. In Figure 2, SAX and JDOM are the most similar
APIs.

Hierarchical clustering may work in to ways: i) in a top-down
manner where the root node of the tree is repeatedly divided accord-
ing to a pluggable second clustering algorithm; ii) in a bottom-up
manner starting from the leaf nodes and repeatedly merging nodes
by employing a similarity function between the clusters to decide
what to merge next. We leverage bottom-up clustering, as summa-
rized below.

Data: elements 𝐸, similarities 𝑆
Result: dendrogram 𝐷

Initialize Cs with singleton clusters for elements 𝐸;
while |Cs | > 1 do

Merge the most similar clusters in Cs according to 𝑆 ;
Insert the merge into the dendrogram 𝐷 ;

end
Algorithm 1: Bottom-up hierarchical clustering.

The similarity computations are explained once we discuss the
instances of hierarchical clustering in more detail. An important
operation on dendrograms is to flatten a dendrogram’s hierarchy
into a set of mutually exclusive clusters. This is done by cutting the
1https://github.com/softlang/apiclustering

https://github.com/softlang/apiclustering
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Table 1: Top 15 used API versions

GroupId ArtifactId Version #Usages
junit junit 4.12 156189
junit junit 3.8.1 130676
junit junit 4.11 113152
javax.servlet servlet-api 2.5 90144
javax.servlet jstl 1.2 90048
log4j log4j 1.2.17 80550
javax.servlet javax.servlet-api 3.1.0 70727
commons-io commons-io 2.4 53062
jstl jstl 1.2 49412
javax.servlet.jsp jsp-api 2.1 43652
commons-dbcp commons-dbcp 1.4 41093
javax.inject javax.inject 1 39440
junit junit 4.10 39388
javax.servlet javax.servlet-api 3.0.1 39388
commons-lang commons-lang 2.6 36020

tree horizontally at a given similarity threshold. In Figure 2, when
cutting at 0.6, the resulting flat clusters are {SAX, JDOM, dom4j}
and {ApacheXML}; we get two flat clusters here because we ‘cut’
two vertical lines.

3 A CURATED API SUITE
We aim at a baseline for API clustering which includes currently rel-
evant APIs with classifiers. To this end, we use a curation approach
which selects popular (Java) API versions in the sense of being
recently and often used in open-source projects hosted on GitHub.
Also, we use the crowd-sourced API classification for so-called cat-
egories and tags, as available on Maven Central Repository (MCR).
In this manner, we expect to improve on previous baselines in pub-
lished research, such as the 60 APIs used in work on API-usage
analysis [36] which were manually tagged by the authors. Improve-
ment concerns numbers of APIs, currentness of APIs considered,
less subjective classification data, and consideration of API versions.
The availability of classification data is essential to our evaluation
approach for API clustering, as developed in Section 5.

3.1 A Raw API List
MCR suggests coordinates groupId, artifactId and, version for refer-
ring to particular versions of an API. The API JARs and metadata
including categories and tags for classification can be retrieved from
MCR.2 The curated suite should only contain APIs with reasonable
degree of importance. The curated suite should not be swamped
with redundant content, i.e., nearly equal versions of the same
API. To this end, we have developed a threshold-based filtering ap-
proach for identifying valuable candidates based on data available
on GitHub and MCR, as described below.

In a first phase, the GitHub search API is used to extract the
location of all recently indexed pom.xml files on GitHub. (For what
it matters, the API search limit is circumvented by recursive query
segmentation which splits a query by setting an upper and lower

2MCR access URL: http://mvnrepository.com/artifact/groupId/artifactId

bound in file size based on the initially returned number of total re-
sults. This process may miss some results.) We only consider heads
of default branches. (Due to limitations in the search API, we only
consider files smaller than 384 KB.) The resulting 2.5 million POM
URLs are streamed into an XML parser for dependency extraction.
(For simplicity, only simple placeholders are extracted; parent POM
files and version ranges are not considered.) In this manner, we
determine over 10 million API usages. The most used coordinate
triples are shown in Table 1.

3.2 Analysis of API Elements
In a second phase, the version-specific API JARs, as downloaded
from MCR, are analyzed in terms of content shared by different
API versions or added and removed in each revision. As the basic
unit for such analysis, we select method names qualified by class
names. We call such a unit ‘API element’. For instance, JUnit ver-
sion 4.11 contains an API element Assert#assertEquals, i.e., the
assertEquals in the Assert class. We decided against package-
qualified names so that, for example, package reorganization does
not affect similarity. We accept the clashes due to missing package
qualification. We stick to this simple representation of source code,
as opposed to sophisticated representations, for example, [34].

Accordingly, we consider sets of API elements Es𝑛−1 and Es𝑛
to compute the measures ‘ADD’ and ‘REMOVE’ for consecutive
API versions. We use the Jaccard coefficient to combine added and
removed elements. The evolution of JUnit’s ADD and REMOVE
measure is shown at the bottom of Figure 3.

ADD(𝑛) = Es𝑛 \ Es𝑛−1
Es𝑛−1 ∪ Es𝑛

REMOVE(𝑛) = Es𝑛−1 \ Es𝑛
Es𝑛−1 ∪ Es𝑛

JC(𝑛) = Es𝑛−1 ∩ Es𝑛
Es𝑛−1 ∪ Es𝑛

3.3 The Curation Strategy
We submit the following curation principles to be met ultimately
by a curation strategy which is meant to select API versions for
inclusion into the curated API suite and for which to evaluate API
clustering:

(a) An API version is of interest, if the overall API is used fre-
quently.

(b) Frequently used versions are more interesting than infre-
quently used ones.

(c) Versions with significant differences (‘ADD’, ‘REMOVE’) are
more interesting than nearly identical ones.

(d) Consecutive versions that are very similar do not have to be
considered both.

(e) Overall, the size of the suite should be controllable so that a
manageable suite can be considered for evaluation.

We considered three strategies. In a first attempt, we ranked the
API versions according to usage combined with the version’s ADD
and REMOVE measure. This approach turned out to be too local in
that it selected interesting breakpoints in the version history, but
it neglected the overall context of available versions; see principle
(c). In a second attempt, we used top-down hierarchical cluster-
ing to recursively divide the version history at significant points
and thereby addressing principle (c). However, we struggled to
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Figure 3: The evolution of JUnit: The upper part depicts the dendrogram merging versions based on similarity. The lower part
shows the version history of JUnit in terms of a version’s relative size, the usage, and the measures ADD and REMOVE. A
star highlights a version that is part of the curated suite. The number behind a version, e.g., (1) in 3.8.1 (1), denotes a version’s
cluster index. The threshold for flattening is 0.3, i.e., 30% of the API elements differ.

Table 2: Top 15 highest rated API versions in the curated API suite (‘Cls.’ abbreviates cluster, ‘usg.’ usage and ‘Vers.’ version)

GroupId, ArtifactId & Version #Es #API
usg.

API
rank

#Vers.
usg.

Cls.
rank

Category Tags Vers.
rank

#Cls.

junit:junit:4.11 1115 552625 0 113152 0 Testing Frameworks junit testing 0 7
mysql:mysql-connector-java:5.1.38 5969 183490 1 16039 0 MySQL Drivers database connector driver

mysql
0 6

org.springframework:spring-webmvc:4.2.5.RELEASE 3385 175226 2 7520 0 Web Frameworks spring framework web mvc 0 6
org.slf4j:slf4j-api:1.7.5 158 167060 3 27329 0 Logging Frameworks slf4j logging api 0 4
org.springframework:spring-context:.1.6.RELEASE 3500 164921 4 6978 0 Dependency Injection spring dependency-injection 0 7
log4j:log4j:1.2.17 1990 157603 5 80550 0 Logging Frameworks logging 0 2
org.springframework:spring-core:4.2.5.RELEASE 4392 130559 6 5897 0 Core Utilities spring 0 8
org.slf4j:slf4j-log4j12:1.7.5 36 122700 7 16546 0 Logging Bridges slf4j logging bridge 0 5
org.springframework:spring-web:4.2.5.RELEASE 3194 119705 8 5496 0 Web Frameworks spring framework web 0 9
org.springframework:spring-test:4.1.6.RELEASE 2191 112174 10 4657 0 Testing Frameworks spring testing 0 5
javax.servlet:servlet-api:2.5 370 108760 11 90144 0 Java Specifications standard specs javax servlet

api
0 3

commons-io:commons-io:2.4 768 103973 12 53062 0 I/O Utilities io 0 6
org.springframework:spring-jdbc:4.2.5.RELEASE 1675 102520 13 4694 0 JDBC Extensions spring jdbc sql 0 3
javax.servlet:jstl:1.2 1704 97483 14 90048 0 Java Specifications standard specs javax servlet 0 2
com.fasterxml.jackson.core:jackson-databind:2.6.3 5213 95269 15 4929 0 JSON Libraries binding json 0 2

reasonably define the point at which to split and we actually discov-
ered principle (d) which was not addressed so far. In the third and
ultimately preferred attempt, we used bottom-up hierarchical clus-
tering, thereby immediately addressing principle (d). Clustering is
applied to the sorted version list of each API. Consecutive versions
are merged based while using the lowest Jaccard coefficient (JC) for
the similarity function. We slightly deviate from the basic algorithm
in that linear (temporal) order of the elements is respected because
we want clustering to align with the version history showing ADD
and REMOVE, thereby enabling an intuitive view of the evolution
of an API in combination with the clustered version ranges. For
instance, Figure 3 depicts the similarity of JUnit versions in the
upper part with the leaves at the bottom corresponding to JUnit’s
version history.

In our approach, a dendrogram is flattened at a given thresh-
old to separate clusters of fundamentally different versions. Three
components are summed up to produces a final version rating. The
formula that we utilize reflects a very basic ranking schema. We
aim at enumerating the versions based on the usage rank of an API

(‘API rank’), the usage rank of a cluster (‘Cluster rank’), and the
usage rank of a version (‘Version rank’). Enumeration is based on a
combined rank defined as the sum of the following components:

• API rank represents an API’s global usage rank over the
raw list. Thereby, we address principle (a).

• Cluster rank ∗ #APIs represents the usage rank of a cluster
among all the clusters for the given API multiplied with the
number of available APIs. Thereby we ensure that each API
is exercised once before any second cluster for an API is
selected. Thereby, we address principle (b).

• Version rank ∗ #Clusters represents the version’s usage
rank in the given cluster multiplied with the overall number
of clusters. Thereby we ensure that each cluster is exercised
once before any second version is drawn from a cluster.
Thereby, we address principles (c) and (d).
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For the sake of manageability (principle (e)) and to remain with
this simple formula, we only consider the top 100 used APIs (Sec-
tion 3.1). We consider all the versions of these 100 APIs for cluster-
ing. We apply a flattening threshold 0.3 for the clusters, i.e., 30% of
the API elements differ. The versions are sorted by the summed-up
components, as described above. We cut at an index of 300. The
highest rated versions of the curated API suite are shown in Table 2.

4 VARIABILITY IN API CLUSTERING
We aim at a feature model for variability in API clustering such
that it can be searched for configurations with particular cluster
properties, most notably correlation with the classification of a
given baseline. The model at hand does not capture all conceivable
ways in which API clustering might work, but it combines a consid-
erable range of options exercised in related work. The mandatory
top-level features are shown in Figure 4.

We restrict the clustering to bottom-up hierarchical clustering.
Representative-based clustering methods (e.g., k-means) or yet al-
ternative methods are not evaluated in this work.

4.1 Data Representation
Since the representation of API data constrains nearly every pro-
cessing components, we decided to restrict our exploration to one
prominent format, i.e., a vector as part of a vector-space model [39].
We prefer this basic, non-dependency-oriented, quantitative, multi-
dimensional representation format for APIs, since it is compatible
with a variety of standard analytical processing steps that follow.
Processing features that we miss are dependency-oriented formats,
most notably, strings or trees.

4.2 Data Extraction
The initial step of extracting data3 bridges the gap between API
(implementation) and vector. A standard way, when working with
source code, is to extract islands of natural language. The resulting
text is converted to vectors of plain natural language terms where
each term is a vector component with the number of its occurrences
in the text. There are different ways how abstract syntax trees can
be mapped to vectors. We only extract declared class and method
names from APIs as islands of natural language; we do not explore
the alternatives of extracting data from the body of a method or
comments. Using identifiers for classification is successfully applied
in previous work [18, 19, 43]

4.3 Alternative Features
In the following, we describe the variability for the top-level manda-
tory features in Figure 4. The order of presentation reflects the order
of processing steps. The sequential execution of the processing steps
could be interrupted, in principle, by several feedback mechanisms.
We stick to the linear process instead of exploring more complex
orchestrations.

Source. Two alternative sources (baselines) may be considered.
This can either be the 60-APIs baseline (feature Sixty APIs), as

3One also speaks of ‘feature extraction’, but we use ‘data extraction’ in this paper to
avoid confusion with features in the sense of variability (feature modeling).

Table 3: Sequentially applied normalization steps

Normalization steps in sequential order Sample

N
on
e

C
C
SW A
ll

Chars that are not letters are removed
from the extracted names.

assertEquals × × ×

Camel-case occurrences in the text are
split by inserting whitespace between
the separate words.

assert Equals × ×

Every char in the text is made lower-
case.

assert equals × × ×

Words from a stop-word list are removed
from the text.

assert equals × ×

The porter stemming algorithm [27] is
applied to all words.

assert equal ×

extracted from the data set of previous work [36] or the curated
API suite (feature Curated API Suite), developed in Section 3.

Sampling. Sampling takes the API list according to the Source
feature and samples its content. Feature None does not alter the
list, feature API (sampling) removes half of the available APIs, and
feature Class (sampling) removes half of the available classes for
each API.

Data Selection. Data selection for clustering can be done by
filter andwrapper models [1]; they both optimize the selected subset
of content that is used for clustering. A filter model is based on a
criterion to select content to feed into the similarity function used
for clustering. A wrapper model applies clustering on a subset of the
content; afterwards, the result is used to evaluate the selection [1].
Wrapper models are not applicable since we do not yet cover feed-
back mechanisms in our approach. We use a domain-specific filter
that accepts method and class names based on visibility: Feature
All extracts all available names whereas Visible only keeps those
that belong to classes and methods that can be seen from outside
the API packages, as this may correspond better to API usage.

Normalization. Normalization is applied to the extracted is-
lands of natural language; in our case, to method and class names.
The output is the source for the construction of vectors in the vector-
spacemodel. Normalization reflects domain-specific knowledge and
conventions. When processing software artifacts, camel-case can be
split. When processing natural language artifacts, stemming can be
applied. We decided on the sequentially applied normalization steps
(inspired by [3]) as shown in Table 3. Each of the alternative features
that we explore in the feature model bypasses a certain selection of
such steps, thereby slightly decreasing the relevant combinations.
These are the options for processing chains for normalization: None
for doing the minimum of necessary normalization; CCSW for in-
cluding programming-related conventions and stop-word filtering;
All for including also a natural language processing step. We used
the Mallet stop-word list.4

Document Granularity. We extract text (class and method
names) from the class files (JARs) of an API, selected by visibility,

4http://mallet.cs.umass.edu/
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API Clustering

Source Sampling
Data

Selection
Normalization

Document
Granularity

Analytical Similarity
Clustering
Scheme

Figure 4: Top-level features of API clustering.

and normalized by different strategies. The Document Granular-
ity defines how the text of the API classes are aggregated to form
the vectors (document unit). We consider these granularity levels:
API (granularity) aggregates all text of an API, Package (granular-
ity) groups by package, and Class (granularity) takes class files as
document unit.

Analytical. The Analytical feature exposes dimensionality re-
duction and weighting techniques side-by-side. We integrated di-
mensionality reduction and weighting techniques in the same po-
sition of the processing chain, as both are altering the vectors
in dimensionality and/or changing the components. For LSI we
combine the weighting scheme and dimensionality reduction com-
parable to [20]. Feature None bypasses the analytical processing;
IDF performs weighting based on inverse document frequency to
decrease the influence of very common terms; LSI applies latent se-
mantic analysis [10] on the vectors (previously weighted analogue
to feature IDF ); and LDA performs latent dirichlet allocation [7].

Latent semantic indexing (LSI) is the application of a singular
value decomposition on the textual domain; it projects the original
data into a smaller axis system. Afterwards, the truncated repre-
sentation of the original data is often better suited for similarity
computations, since the noise is reduced in the documents, and
phenomena like synonymy or polysemy of features are resolved [1].
We set the dimension parameter to 200. Latent dirichlet allocation
(LDA) is mostly considered to be a topic-modeling technique rather
than a technique for reducing dimensionality. While LSI uses a
reduced amount of linear independent dimensions to represent doc-
uments in a compressed way, LDA employs a stochastic sampling
process producing a set of topics that can afterwards be used in
a similar manner to represent and compare documents. Our LDA
instance is configured with 25 topics; beta and alpha are both as-
signed to 0.1; it is configured with a random seed and memorized
once computed; and we use an EM algorithm implementation of
Scala Apache Spark5. LSI is taken from the same library.

By setting the parameters for LSI and LDA to specific values, we
exclude alternative topic counts, dirichlet distributions, or dimen-
sion counts, thereby suggesting directions for future work. Also,
we do not explore several known effects of weighting techniques
on topic models or dimensionality reduction (e.g., [20, 24, 44]).

Similarity. A similarity function is the essential input for hier-
archical clustering. We consider two definitions that are applicable
for similarity computation between API vectors. If document gran-
ularity is not chosen to be API, i.e., the document vectors do not
directly correspond to an API, then the class- or package-sized
documents for each API are aggregated by summing up the vectors

5https://spark.apache.org/mllib/

to form the overall API vector. Prominent alternatives for simi-
larity are Cosine and Jaccard coefficient . There are several other
measures that we do not explore since our data might be sparse
(no dimensionality reduction is applied); it might contain negative
components (when processed by LSI); or the document vector can
represent a stochastic distribution (when processed by LDA). We
do not explore several alternatives for similarity, for example, the
lp-norm or Kullback Leibler divergence.

Clustering Scheme. Bottom-up hierarchical clustering works
on a set of clusters and keeps on merging (pairs of) clusters until
only one cluster remains. We permit different linkage schemes
needed to lift the similarity between two APIs to the level of two
sets of APIs. There are the following options. The Single scheme
merges those clusters first with the minimum distance in between
any of the APIs contained in the two set, no matter how far the
clusters’ centers are apart from each other. The Complete scheme
leverages themaximal distance in between the two sets. TheAverage
scheme leverages the mean similarity.

5 EVALUATION OF API CLUSTERING
The general idea behind the feature model evaluation is that every
configuration has a fixed correlation with an external criterion. In
this manner, configurations (correlations) can be compared. Ideally,
API versions that are classified the same by a given baseline would
be grouped in the same cluster. Also, all versions of a API should be
grouped together by clustering. First, we describe how correlation
between clusters and classification can bemeasured. Afterwards, we
present the concrete evaluation in terms of i) correlation curves, ii)
maximum correlation, iii) feature dependencies, iv) generalization
and v) top configurations.

5.1 Methodology
The enumeration of configurations is straightforward because the
feature model is flat with all top-level features being mandatory and
directly refined into leaf alternatives. There are 2592 configurations
based on combining these options: Source (2), Sampling (3), Feature
Selection (2),Document Granularity (3), Normalization (3), Analytical
(4), Similarity (2) and Clustering Scheme (3).

We use an external criterion [13] for cluster evaluation, that is,
a pre-existing classification. Our methodology for computing the
correlation between clusters and classification is inspired by related
work on clustering metamodels [4]. We construct matrices𝑀𝑥 for
several relationships 𝑥 (0 and 1 in the cells) between the clustered
API versions as the rows and columns.

𝑀𝑥 (𝑖, 𝑗) =
{
1 if 𝑖 and 𝑗 are related according to 𝑥
0 otherwise
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Figure 5: Correlation curves for the analytical models.

There are these options for 𝑥 : cls — for belonging to the same
cluster; tag — for sharing a tag (according to MCR); cat — for being
in the same category (according to MCR); dom — for being in the
same domain (according to Sixty APIs); api — for being versions
of the same API which we also refer to as ‘API affiliation’. The
matrices tag, cat, dom, and api correspond to external criteria.

We describe now the computation done for each configuration.
This computation employs the created dendrogram. We apply the
MATLAB corr2 function6 to compare𝑀cls and any external crite-
rion matrix; the function returns a correlation measure between -1
for negative correlation, 0 for no correlation, and +1 for positive
correlation. We do not want to select a threshold for cutting the
dendrogram, as it is prone to high variations in the underlying sim-
ilarity. Thus, we flatten the dendrogram at each merging step and
compute𝑀cls such that each matrix reflects one additional cluster
merge.

5.2 Correlation Curves
The sequence of corr2 applications between the sequence of𝑀cls
matrices and the external criterion can be depicted as a curve show-
ing the evolution of correlation over all merging steps with the
criterion at hand. For instance, Figure 5 illustrates main trends of
the stepwise correlation grouped by the Analytical feature with a
notion of uncertainty, depicted by the shaded area around the main
curves. There are four curves in such a figure: one for each external
criterion.

The plot in Figure 5 shows that IDF performs best at API af-
filiation (i.e., grouping of API versions) at nearly every merging
step; LSI performs best in reproducing tags; LDA and no analytical
precessing (None) tend to misclassify APIs on average but both also
6http://de.mathworks.com/help/images/ref/corr2.html

Figure 6: Influence of normalization on correlation.

share the highest amount of uncertainty; IDF and LSI both perform
well on the domain criterion. API affiliation can only be evaluated
for Curated API Suite because the corpus for Sixty APIs contains
only one version per API. A side effect of different versions is that
the tag and category curves rise during the first 200 steps simply
because versions of the same API are assigned to the same classifi-
cation and are very likely to be merged. The domain criterion can
only be tracked on the Sixty APIs dataset with 60 APIs and hence,
only 60 merging steps are shown in this case.

This type of plot is also available online for the other top-level
features of our feature model. In this manner, we cover all 2592
configurations at some level of abstraction. That is, we group the
2592 configurations by features and plot the set of correlation curves
for each group as done in Figure 5.

5.3 Maximum Correlation
Feature-specific influences are illustrated by simplifying the plots
on depicting the distribution of maximum correlations, i.e., the peak
of the correlation curves. Figure 6 shows such distributions for the
alternatives of the Normalization feature. Introducing stemming
(All) does not increase performance when compared to camel-case
splitting and stop-word filtering (CCSW ). Tags, category, and do-
main classification are negatively effected by missing normalization
(None); API affiliation (grouping of API versions) is affected less.
Such comparison of one particular feature is reasonable because
each alternative’s distribution reflects all other features equally
measured, e.g., each distribution of None, CCSW , and All bears the
same amount of configurations employing the feature LDA.

5.4 Feature Dependencies
We may also examine the influence of features on each other. De-
pendency between features is illustrated by the distribution of
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Figure 7: Influence of document granularity and the analyti-
cal model on correlation.

Figure 8: Influence of sampling and the analytical model on
correlation.

maximum correlation when grouping all configurations for two
features a and b. The distribution is depicted on the vertical axis,
the alternatives of feature a are listed on the horizontal axis, and
feature b defines the colors of the midspread in the boxplot. For the
features Document Granularity and Analytical this is shown in Fig-
ure 7. The plot shows that, except for criterion API affiliation, LDA
is much better when working with the coarse-grained document
sizes Package and API. This is comparable to insights of other re-
search, e.g., in the context of analyzing twitter documents [28]. All
other analytical models are affected less by document granularity.

5.5 Generalizability
We may leverage Sampling strategies for checking the generaliz-
ability of statements in our work. Figure 8 shows a grouping by
Sampling and Analytical. The analytical method can be interpreted

as the treatment and different sampling strategies corresponds to
the subject of a treatment. The maximum correlation with respect
to an external criterion is the measure that we want to observe;
hence, we examine the distributions. Currently, our sampling strat-
egy is not strong enough to make claims about significance. A
drawback of the corr2 function is that the diagonal of both com-
pared matrices holds ones which happens to increase the ratio of
perfectly correlating diagonal entries when matrix dimensionality
decreases. Therefore, the correlation cannot be reliably compared
for configurations on different sized API lists.

5.6 Top Configurations
We show the top combinations for the Curated API Suite in Table 4.
No sampling is applied. The list is constructed such that it contains
each available feature in its highest ranked position. The top-most
occurrence of each concrete feature is highlighted in bold. We
decide to rank according to the maximum category correlation.
LDA produces the best clusters. The second configuration on the
ranking is one that uses the analytical model IDF and is the best
configuration when having Class document granularity fixed. The
third configuration employs LSI it is the first configuration which
benefits from bypassing stemming (feature CCSW ). The Jaccard
coefficient performs best when selecting all methods of an API
instead of the visible ones (feature All). The two highest ranked
configurations in Table 4 are explored in the following section.

6 EXPLORATION OF API CLUSTERING
An exploration of the clustering results, subject to setting parame-
ters of the configuration, may help developers to validate existing
classifiers in terms of answering the questions whether the right
classifiers are applied for all APIs and how to usefully recommend
classifiers. Of course, limitations of the clustering approach may
also be revealed in this manner. That is, an overall maximum corre-
lation may not necessarily imply that the corresponding configu-
ration works best for clustering (categorizing) a specific subset of
APIs. We demonstrate these aspects below.

In our implementation, we provide a panel (Figure 9) permitting
the user to select an alternative for each top-level API clustering
feature. Such a multi-parametric way of exploring clustering is
inspired by previous work on clustering metamodels [4].

Figure 10 shows a dendrogram for merging the MySQL and Post-
greSQL APIs. This dendrogram is computed for the top-most con-
figuration in Table 4. This LDA-based clustering does not separate
the different APIs; it separates older and newer versions, thereby
illustrating a limitation of our approach.

Figure 11 shows another dendrogram for merging the MySQL
and PostgreSQL APIs. This dendrogram is computed for the second
ranked configuration in Table 4. This IDF -based configuration is
more appropriate for grouping versions of the same API together.
If we are interested in such grouping, we should consider configu-
rations with a higher correlation with API affiliation. This is indeed
the case for the shown configuration.

Figure 12 points out a missing classification in MCR. In the over-
all view, this part of the dendrogram is located above the previ-
ously shown MySQL and PostgreSQL clusters in Figure 10. Clearly,
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Table 4: Top configurations with maximum category correlation

Analytical Similarity Normal. Data Selec-
tion

Document
Granularity

Clustering Max Cat-
egory

MaxTags Max
Api

LDA Cosine All Visible Package Single 0.602 0.587 0.671
Idf Cosine All Visible Class Single 0.599 0.439 0.844
LSI Cosine CCSW Visible Package Single 0.579 0.501 0.79
Idf JC All All Class Single 0.571 0.387 0.794
Idf JC All Visible Package Average 0.568 0.467 0.871
None Cosine All Visible Class Single 0.566 0.414 0.852
LSI Cosine None All Package Single 0.554 0.559 0.725
LSI Cosine CCSW All Package Complete 0.551 0.462 0.834
LSI Cosine CCSW Visible API Single 0.539 0.471 0.845

Figure 9: Parameter panel for exploration.

Figure 10: MySQL and PostgreSQL clustering.

‘com.alibaba:druid’ seems to provide SQL functionality, as we con-
firmed manually, but such a classification is missing, thereby il-
lustrating the potential of our approach to help with correcting
classifications.

Figure 11: An alternative MySQL and PostgreSQL clustering.

Figure 12: Missing classification on Maven Repository.

7 THREATS TO VALIDITY
Curated list. An issue on internal validity is that only the most

recent POM files are taken into account regardless of any time-
stamp. We argue here that the most recent state of GitHub is our
focus indeed. We exclude version ranges from the analysis, as we
prefer analyzing ‘explicitly’ chosen API usage. A last point that we
omit to cover are accidentally packaged dependencies in API JARs.
This is difficult to handle. For instance, naming conventions of the
group and artifact id are not strictly met in the package structure. In
the future, we aim to include explicit API dependency information.

Feature model. The main threats to internal validity are related
to the restricted and biased feature model as already outlined in
Section 4. We keep close to related work to address this threat.

Evaluation. A main issue on external validity, already pointed
out in Section 5, is that we do not make significance statements
about the generalizability of a configuration. We partially handle ex-
ternal validity applying a configuration on differently sampled data.
The outliers produced by LDA are connected to the lack of samples
that are input to our approach, as LDA is a stochastic process that
produces different results on each run. Especially when computing
statistics on LDA averaging the results becomes necessary [41].
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This threat can be handled in future work by increasing the amount
of samples.

8 RELATEDWORK
Categorization andClustering. In [11], a comparable approach

to automated categorization of new software projects or libraries is
exercised: BUCS (Bytecode-based Unsupervised Categorization of
Software). Unsupervised dirichlet process clustering is used. The
authors motivate the usability with missing source code (only class
files are available) and the unsupervised nature of the classification.
We align with this research in that we add a well-defined baseline
and explore variability not present in BUCS. Such research can
be seen as a potential profiteer of insight gained by our evalua-
tion, for example, in that stemming is not crucial for the shape
of API clusters. In [45], API clustering in the domain of service
oriented-computing applies a k-means variant in combination with
LDA. The work exceeds ours in providing and evaluating a ranking
model for services that is aware of categories. In [4], metamodel
repositories are clustered hierarchically. Four alternative similarity
functions are used and compared. We explore more alternatives and
combinations. This work exceeds ours in also examining structural
similarity between metamodels. In [18, 19, 43], software archives
or open-source repositories or source-code archives are automat-
ically categorized. We cluster APIs using hierarchical clustering
and by aiming at good correlation with existing baselines. In [20],
program code is hierarchically clustered in amore fine-grainedman-
ner. Our feature model covers parts of the described methods, i.e.,
LSI, cosine similarity, and average linkage scheme. In [26], various
software clustering algorithms are evaluated in the context of pro-
gram comprehension. First, many comprehension decompositions
of the system are produced that are then used for external evalua-
tion of three linkage schemes of hierarchical clustering, k-means,
and ACDC. We consider several more dimensions of alternatives
described by a feature model. We conduct our research on APIs.

Parameter Exploration and Optimization. In [31], the meth-
ods Jensen-Shannon (JS), VSM, LSI, and LDA are used for traceabil-
ity recovery and evaluated on the small-scale EasyClinic and eTour
corpora. We conduct the evaluation of clustering on the larger,
crowd-sourced baseline MCR. Multi-dimensionality of alternatives
is readily touched in this work in terms of exploring the effects
of six different LDA topic counts. In [6], LDA-specific parameters
and differences in the normalization are examined when used for
source-code analysis. The research focuses on the illustration of
parameter influence on internal criteria executed on a synthetic
corpus. The authors aim to aid in LDA parameter understanding.
We execute a broader analysis of alternatives on a crowd-sourced
external criterion. In [29], configuration parameters in software
systems are analyzed, as motivated by poor default configurations.
The proposed technique uses statistic methods to generate a graph-
based plot on parameter interaction and is exemplified for Apache
Hadoop configuration. We also depict dependencies between pa-
rameters. In [33], LDA parameter optimization relies on genetic
algorithms. We may want to enhance our work accordingly to lift
our feature model exploration to the level of search-based software
engineering [14]. This work uses the combinatorial exploration of
configurations for the evaluation of the generic algorithm. In [8], a

method called combinatorial interaction testing (CIT) is described
that enumerates combinations of parameter assignments to test
a system. The amount of tests can be reduced by only enumerat-
ing all possible n-way combinations for the parameters. In [9], the
generation of combinations is pruned by constraints leading to a
cost-effective coverage. We see the introduction and constrains or
other means of reducing the number of combinations as a useful
extension of our approach. In [16], combinatorial interaction test-
ing is applied to generate coverage arrays for a feature model used
to test a industrial scale software product line. This is facilitated by
an improved algorithm. We share the notion of feature models.

Searching. In [32], LibFinder is presented; it helps revealing
missed reuse opportunities of APIs in a system. The mechanism is
driven by used APIs, co-usage of APIs, and the semantic similarity
in between the system and an API. This work is relevant in that
it also employs API usage data mined from Maven and GitHub. In
[42], search functionality that is suited for API classes is illustrated
that can be seen as an alternative to category-based browsing that
we facilitate.

Usage Patterns. In [40], a dataset of API usage is presented.
This work, just like ours, relies on mining usage data with the help
of parsing POM files located on GitHub. This dataset exceeds our
usage data since it considers fine-grained API method calls and ver-
sion history. In [30], usage examples are automatically mined and
visualized. This work is interesting in terms of the varied granular-
ity of the produced ‘clusters’ of practical API usage. In [37], usage
patterns are extracted only considering the API and not the client
projects. The work is related in that is also uses a clustering algo-
rithm, i.e., DBSCAN, for detecting usage patterns. In [38], the previ-
ous work is extended by combining client-based and library-based
usage patterns. In [12], a deep learning-based approach focused on
API-usage sequences is illustrated.

9 CONCLUSION
We have developed an automated approach for computing a curated
API suite based on Maven Central Repository and GitHub. We have
used the suite as a baseline for exploring clustering configurations.
The suite may also serve other purposes in the future, for example,
for mining API migration patterns [17], in which case however we
should extend the suite by method calls in client projects along
the version history, as outlined for a different data set in related
work [40].

We plan to extend the feature model (e.g., for discrete parameters)
but also to restrict it (e.g., on a particular interest). This involves
an improved evaluation method with respect to scalability and
constraining the feature model. Two options that we have in mind
are using genetic algorithms, as described in [33], or combinatorial
interaction testing of the feature model, as described in [8, 9, 16].
We also want to study features that concern similarity computation
for artifacts of different types (e.g., code versus documentation
versus model versus textbook). We are interested in interpreting
the data that emerges during different clustering configurations
with respect to the given domain (i.e., documents, topics and terms).
Further, we see potential applications of the curation approach (i.e.,
how versions are selected) in other contexts, as it might help to boil
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down the available amount of interesting versions in those contexts,
too, for example, in the context of recommendation systems for
software engineering [35].
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