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Abstract. Mining software repositories is a common activity in software
engineering with diverse use cases such as understanding project quality,
technology usage, and developer profiles. Such mining activities involve,
more often than not, a phase for data extraction from the source code in
the repository with recurring tasks such as processing the folder structure
(possibly on the timeline), classifying repository artifacts (e.g., in terms
of the languages or technologies used), and extracting facts from the
artifacts by parsing or otherwise. We describe a new approach for such
data extraction; its key pillar is a declarative rule-based language for the
uniform, inference-based extraction of facts from the repository (the file
system), the artifacts in the repository (their content), and previously
extracted facts. All inferred facts are maintained in a triple store. We
describe a case study for the purpose of understanding the usage of
EMF. To this end, we describe an emerging catalog of patterns of using
EMF in repositories and we detect these patterns on GitHub. In our
implementation, we use Apache Jena for which we provide dedicated
language support tailored towards mining software repositories.

1 Introduction

Our long-term research objective is to apply megamodeling [5, 4] to the problem
of documenting software-technology usage in software projects. In our previ-
ous work [14, 29, 19, 17, 9], we focused on case studies, basic aspects of language
support for such megamodeling, some forms of verification of a megamodel to
correspond to a proper system abstraction, the axiomatization of the involved
megamodeling expressiveness, the methodology for discovering megamodels, and
surveying related concepts in the literature. We also use the term (models of)
‘linguistic architecture’ for such megamodels.

In this paper, we apply a mining- (or reverse engineering-) oriented view on
documenting (or modeling) usage of technologies. We aim at extracting (infer-
ring) facts uniformly from a software repository such that these facts classify
artifacts in the repository and describe relationships, for example, related to de-
pendencies, conformance, and correspondence. In particular, we aim at detecting
patterns of technology usage. This problem is somewhat similar to design-pattern
detection [24, 34, 25] and architecture recovery [16, 18, 27, 2].

In the case study of this paper, we are concerned with EMF. We aim to
better understand how EMF is used ‘in the wild’ in GitHub projects. To this
end, we also describe an emerging catalog of patterns for EMF. There are, for



example, patterns dealing with the more or less consistent and complete presence
of interrelated artifacts: metamodel versus derived Java code versus generator
model. In this paper, we do not study the evolution history of projects [40].

Our approach is original in that we use a declarative rule-based language
for the uniform, inference-based extraction of facts from the repository (the
folder structure), the artifacts in the repository (their content), and previously
extracted facts. All inferred facts are maintained in a triple store. To give the
reader an idea, consider the following trivial rule drawn from the case study:

1 (?x sl:manifestsAs sl:File) (?x sl:elementOf sl:XML) Extension(?x,”ecore”) →
2 (?x sl:elementOf sl:Ecore).

Listing 1. Sample rule classifying Ecore files.

The body of the rule (i.e., the condition left to ‘→’) quantifies over artifacts ?x
that are files with extension ‘ecore’ and readily known to be of ‘type’ (language)
XML. For each such artifact, the head of the rule (right to ‘→’) states that
the artifact is also of ‘type’ (language) ‘Ecore’. Thus, the rule infers triples for
artifacts to be classified as metamodels.

Our rule-based approach is declarative and modular, when compared to the
common use of problem-specific custom functionality for processing folder struc-
ture and file content (e.g., [21, 9]). Our approach leverages an extensible suite of
accessor primitives for interacting with standardized formats and structures such
as Java, XML, and the file system (the folder structure) in a uniform manner.
The rule-based approach helps in manifesting only the facts that are actually
needed, as opposed to operating on complete ASTs or similar structures (as in,
e.g., [34, 35, 1, 39]); it is up to the rules and the accessor primitives to selectively
extract and infer more facts. Such inference is similar to the event-condition-
action paradigm [10].

Summary of the paper’s contributions

– We develop a rule-based approach for uniform, inference-based data extrac-
tion from source-code repositories. While we leverage existing techniques
known in the semantic web context and as specifically supported by Apache
Jena, we provide dedicated language support on top of — tailored towards
mining software repositories.

– We initiate work towards a structured catalog of EMF repository patterns.
Each pattern captures a particular situation in a repository such as the
presence of a certain kind of artifact and a potential or definite symptom
of incompleteness or inconsistency (e.g., a missing or an unsynchronized
artifact). This catalog calls for future work.

– We design and execute a case study for mining instances of EMF repository
patterns in projects on GitHub. In this large-scale case study, we examine
5759 repositories. In this paper, we limit ourselves to only studying the most
recent version of each project, leaving an evolutionary analysis to future
work.



Roadmap of the paper Section 2 develops the rule-based approach for data
extraction in mining software repositories. Section 3 develops the catalog of EMF
repository patterns. Section 4 describes the design of the case study for EMF
and the results. Section 5 discusses threats to validity. Section 6 discusses related
work. Section 7 concludes the paper. The rules and the dataset for the case study
and the implementation of the rule-based language are available online.1

2 Rule-Based Data Extraction from Repositories

In our approach, the result of data extraction is a ‘model’ — a set of triples as
inferred by the successful application of rules. A rule is of the form ‘body → head .’
where body is the condition part and head corresponds to the inferred triples.
That is, a rule matches the body against the current set of triples and for each
resulting match, the head adds new triples to the model. Inference is a monotone
process of inferring triples until a fixed point is reached, i.e., no more successful
rule applications for new triples are applicable. The rules may use ‘primitives’, as
discussed below, to access the repository (the folder structure and the content of
files). The rule-based approach provides full control over materializing just the
‘repository content of interest’ in the model. In this section, we may occasionally
use rules from the case study for illustrative purposes.

2.1 The Triple Model

Fact extraction infers triples or, in fact, labeled edges of a model (a graph).
Nodes are URIs (Unified Resource Identifiers) or literals (such as strings). Each
triple consists of a subject node (a URI), a predicate (a URI) and an object node
(a URI or literal) where the predicate can be viewed as the edge label. In the
earlier rule in Listing 1, we use sl:File as an object for classifying a repository
artifact ?x in the subject position with sl:manifestsAs as the predicate for the
form of classification needed, i.e., an artifact to manifest as, for example, a folder
or file. sl (for ‘software language’) represents a custom prefix.

Fact extraction starts from a graph with the following triple:

1 repository:/ sl:manifestsAs sl:Folder.

Listing 2. The initial model containing one triple.

The subject URI repository:/ is special in that it refers to the root of the
actual repository folder. Inference discovers folders and files and content thereof,
as we discuss below.

2.2 A Scheme for Referencing Repository Content

Figure 1 illustrates the straightforward scheme that we assume for referring to
repository content. This is the foundation for treating folders, files, and con-
tent particles (fragments of content) for files of different languages in a uniform

1 https://github.com/softlang/qegal
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Fig. 1. URIs for referring to repository content for a small sample project containing
an ANT and a Java file.

manner. Whether or not all the conceivable nodes are materialized in the model
depends on the fact extractor, i.e., on the design of the rules. Typically, we ma-
terialize the catalog of the file system completely, but we materialize file content
selectively, as we will discuss in more detail in a second.

2.3 Repository Accessors

The rule-based approach relies on primitives for accessing the repository (folder
structure and content of files). In particular, the body of a rule may use such
primitives to match or bind repository data such as file names and file content
in terms of different representations (e.g., ASTs). Primitives may be also used
in heads of rules for the purpose of data manipulation or for expanding given
bindings into sets of inferred triples.

The primitives needed in the case study are shown in Table 1 with some
omissions for brevity. The primitives are free of side effects to the repository. A
primitive takes one or more arguments. Each argument is either a URI, a literal,
or a placeholder to be bound. The application of a primitive may fail, if the given
arguments are not in the corresponding relationship or placeholders cannot be
bound to valid results.

2.4 Materialization of the Folder Structure

The following rule is the starting point for decomposing the repository folder:

1 (?x, sl:manifestsAs, sl:Folder) → DecFs(?x, ”/∗”, sl:partOf, ?x).

Listing 3. Recursive folder decomposition into parts.

For the initial model (Listing 2), the placeholder ?x in the body of the rule in
Listing 3 is matched with repository:/. The head uses the DecFs(folder,

subj, pred, obj) primitive, as described in Table 1, to decompose file paths,



Table 1. Primitives for accessing folder structure (in general) and file content for XML
and Java (in the case study).

Primitive Parameters and Description
IsFile (artifact) Matches if the artifact URI can be accessed as a file.
IsFolder (artifact) Matches if the artifact URI can be accessed as a folder.
Extension (file, extension) Matches if the file URI has a given extension. (When

extension is a placeholder, it will be bound.)
XmlWellformed (file) Parses the content referred to by the file URI and matches if the

content is well-formed XML.
Children (uri, part1, ..., partn) Decompose a uri into its parts split at ‘/’; parts

filled in are matched; variable parts are bound.
DecFs (folder, xpath, result) Decompose references to file system by applying

an XPath expression xpath on the repository starting from the given folder;
assigns the URI of the first result to result.

DecFs (folder, subj, pred, obj) A variation on the previous primitive. It infers
a set of triples, when used in the head of a rule. The inferred triples vary
in the subject based on the argument subj which corresponds to the XPath
expression in the basic form of DecFs. The arguments pred and obj are as-
signed to regular URIs. For instance, DecFs(repository:/,"/*", sl:partOf,
repository:/) adds a sl:partOf triple for all first-level repository children
(XPath ‘/*’ for subject) of the repository (for the object).

DecJava,
DecXml

Variations on DecFs working on Java ASTs or XML trees as opposed to the
file system.

StrXml,
StrJava,
UriXml,
UriJava

Variations on the decomposition primitives for use in rule bodies, as de-
scribed above. These variations perform data lookup as opposed to con-
structing a reference. The Str... primitives look up a string (e.g., an at-
tribute in XML) and return it as a result. Likewise, the Uri... primitives
look up a string which is a URI.

to compose subject URIs, and to infer triples with the sl:partOf predicate and
?x as the object. Listing 4 presents the resulting triples.

1 repository:/ sl:manifestsAs sl:Folder. // Initial repository root classification.
2 repository:/src/ sl:partOf repository:/. // src is part of the repository.
3 repository:/build.xml sl:partOf repository:/. // build.xml is part of the repository.

Listing 4. Evolved model after applying the rule for folder decomposition.

We should enable the recursive application of the previous rule. To this end,
we need to infer triples with the manifestation types sl:Folder and sl:File

of discovered artifacts. The following rules match all (newly added) sl:partOf
triples, check whether the part is a folder or a file (using the corresponding
primitives), and, if so, add suitable triples with the sl:manifestsAs predicate.

1 (?x, sl:partOf, ?parent) (?parent, sl:manifestsAs, sl:Folder) IsFolder(?x) →
2 (?x, sl:manifestsAs, sl:Folder). // Classifies folders.
3 (?x, sl:partOf, ?parent) (?parent, sl:manifestsAs, sl:Folder) IsFile(?x) →
4 (?x, sl:manifestsAs, sl:File). // Classifies files.

Listing 5. Classifying files and folders.

We would like to classify files by languages, as this is a prerequisite for diving
deeper into the content, e.g., at the level of parse trees or ASTs. The following
rules classify files by a language adding an sl:elementOf relationship between
the file and the language at hand. We use (?x sl:manifestsAs sl:File) to
select potential candidates ?x. Listing 6 illustrates the rules for language classi-
fication.



1 (?x sl:manifestsAs sl:File) Extension(?x,”java”) → (?x sl:elementOf sl:Java).
2 (?x sl:manifestsAs sl:File) XmlWellformed(?x) → (?x sl:elementOf sl:XML).
3 (?x sl:manifestsAs sl:File) (?x sl:elementOf sl:XML) Extension(?x,”ecore”) →
4 (?x sl:elementOf sl:Ecore).
5 (?x, sl:manifestsAs, sl:File) Children(?x, , ”META−INF”, ”MANIFEST.MF”) →
6 (?x, sl:elementOf, sl:Manifest).
7 (?x, sl:manifestsAs, sl:File) (?x, sl:elementOf, sl:XML) Children(?x, , ”build.xml”) →
8 (?x, sl:elementOf, sl:Ant).
9 (?x, sl:manifestsAs, sl:File) Children(?x, ,”build.gradle”) →

10 (?x, sl:elementOf, sl:Gradle).
11 (?x, sl:manifestsAs, sl:File) (?x, sl:elementOf, sl:XML) Children(?x, , ”pom.xml”) →
12 (?x, sl:elementOf, sl:Pom).

Listing 6. Rules for basic language classification.

2.5 Pluggable primitives

In our implementation, we rely on the extensibility of the rule engine. That is,
Apache Jena allows us to plug Java code for new primitives into the engine. In
the common semantic web-like use case, primitives are used for basic string or
data manipulation. In our mining context, primitives correspond to significant
functionality involving repository access, parsing, and more complex analyses.
Consider the following implementation of the Extension primitive:

1 public class Extension extends QegalBuiltin {
2 @Override
3 public boolean trackedBodyCall(Node[] args, int length, RuleContext context) {
4 BindingEnvironment env = context.getEnv();
5 String file = getArg(0, args, context).getURI();
6 Node extension = getArg(1, args, context);
7 return env.bind(extension, NodeFactory.createLiteral(iolayer.extension(file)));
8 }
9 }

Listing 7. Implementation of the Extension builtin.

This primitive for extension matching or extraction would be typically used in
the body of a rule and thus, we need to implement a method trackedBodyCall

which receives the bound or free arguments args and returns true if the primi-
tive completes successfully, i.e., matching or binding succeeds. Extension(file,
extension) takes two arguments: the file argument which must be given and
the extension argument which is matched if present or bound if it is a place-
holder. That is, the method env.bind(current, expected) returns true if the
current and expected assignments match or, in the case that current is an
open placeholder, it binds it to the expected value and returns true. For brevity,
we omit the discussion of implementing primitives for head usage.



Fig. 2. IDE support for working with rules and primitives.

2.6 Dedicated Language Support

Our implementation leverages the Apache Jena2 implementation for rule-based
inference and triple processing. Our experience with the rule-based approach in
case studies such as the one of Section 4 led us to advance the Jena approach by
adding language support addressing the complexities of mining software repos-
itories. In addition to the specific primitives needed, as discussed earlier, there
are these aspects:

IDE support Based on XText, [3]3 provide editing, syntax highlighting, auto-
completion, code navigation, and other IDE support (see Fig. 2 for an illus-
tration) also subject to JVM integration for the pluggable primitives of the
rule-based language;

Logging and profiling Log the execution of primitives with appropriate con-
text and runtimes to enable debugging of the rule-based system and to check
for performance hogs, thereby guiding optimization of primitives and rule set;

Exception handling Recover from and log exceptions thrown by accessor prim-
itives to enable completion of repository processing and post-mortem anal-
ysis, subject to a dedicated interface for primitives and housekeeping;

Virtualized access Be able to switch between actual file-system-based access
to artifacts (development mode) and immediate repository access without
manifestation on the local file system (production mode);

Testing Use a combination of parametrized and instance-based tests on white-
and blacklisted repositories and the derived models, also using redundant
repository processing (e.g., based on grep) to obtain reasonable baselines.

3 Towards an EMF Repository Pattern Catalog

EMF can be used in different ways in projects, subject to the presence of dif-
ferent types of artifacts, possibly with different multiplicities and in different

2 https://jena.apache.org/
3 http://www.eclipse.org/Xtext/



Table 2. An EMF Repository Pattern Catalog (Some of the corresponding detection
rules are discussed in Section 4. All of the rules are available online.)

Id Cls. Artifacts Description and cause
Single artifact patterns
E Pres. – Ecore Pkg. The presence of an Ecore Pkg. in ‘.ecore’ files as root or

subpackage.
J Pres. – Java Pkg. The presence of a Java Pkg.
G Pres. – Genmodel Pkg. The presence of a Genmodel Pkg. in ‘.genmodel’ files as

root or subpackage.
C Pres. – Customized Java

Pkg.
The presence of a Java Pkg. with customized interface or
implementation.

Double artifact patterns
EJ1 Pot. In-

comp.
– Ecore Pkg.
– Java Pkg. (ma)

a Missing

A Java Pkg. cannot be found for a given nsURI as ex-
tracted from some Ecore Pkg. This is only a potential
incompleteness, because a Java Pkg. could be potentially
derived, if no customization is intended.

EJ2 Def. In-
comp.

– Ecore Pkg. (m)
– Java Pkg.

An Ecore Pkg. cannot be found for a given nsURI as
extracted from some Java Pkg. This is a definite incom-
pleteness because the Java Pkg. is derived and thus, the
underlying primary artifact (the Ecore Pkg.) should also
be in the repository.

EJ3 Pres. – Ecore Pkg.
– Java Pkg.

The presence of a Java Pkg. and Ecore Pkg. with the
same nsURI. One Ecore Pkg. can correspond to many
Java Packages.

EE Def. In-
cons.

– Ecore Pkg.
– Ecore Pkg.

An Ecore Pkg. with at least one competing Pkg. with the
same nsURI.

EJc1 Def. In-
cons.

– Ecore Pkg.
– Java Pkg.

A Java class that is part of the Java Pkg. with a corre-
sponding Ecore Pkg., but without a corresponding Ecore
classifier (based on name comparison). For instance, one
may have forgotten to remove a Java class derived from
an earlier version of the metamodel.

EJc2 Def. In-
cons.

– Ecore Pkg.
– Java Pkg.

An Ecore classifier contained in an Ecore Pkg. with a cor-
responding Java Pkg., but without a corresponding Java
classifier (based on name comparison). The Java Pkg. is
thus out of sync with the Ecore Pkg. in the repository.

Triple artifact patterns
EJJ Pres. – Ecore Pkg.

– Java Pkg.
– Java Pkg.

An Ecore Pkg. with at least two corresponding Java
Packages.

EJG Pot. In-
comp.

– Ecore Pkg.
– Java Pkg.
– Generator Pkg.

(m)

For a corresponding pair of Java Pkg. and Ecore Pkg., a
corresponding Generator Pkg. cannot be found.

combinations. In this paper, we begin work towards a catalog for EMF which
covers these basic ‘artifact’ types: Ecore Package, as identified in ‘.ecore’ files
where one such file can possibly define several such packages; Java Package –
an actual Java package containing derived classes according to a metamodel,
a factory, and a package description; and Generator Package as identified in
‘.genmodel’ files.

Artifacts of these types can be related in certain ways in a project. In fact,
by checking on certain relationships, e.g., by determining the absence of certain
artifacts or elements thereof, we may infer cases of incompleteness or inconsis-
tency, where these are either potential or definite problems of usage or, in fact,
of maintaining EMF usage in the repository. Table 2 lists patterns organized
along these different dimensions (artifact type, presence, incompleteness, incon-
sistency, potential versus definite). We group by cardinalities of artifacts: single,



double, and triple artifact patterns. For brevity, we exclude patterns related to
XMI-based persistence in this paper. Generally, further work is needed to arrive
at a more comprehensive catalog for EMF.

4 An MSR Case Study on EMF

We located projects with traces of EMF usage on GitHub. We assessed these
projects in terms of some basic architectural characteristics to prepare a selec-
tion of well-understood project layouts for which a mining process is assumed
to provide more comprehensible insights. Eventually, we detected EMF repos-
itory patterns as introduced in Section 3. We describe these phases here and
summarize our findings.

4.1 Locating Repositories

We used the GitHub search API to locate all recently indexed Ecore, Genera-
tor Model and Java Model files on GitHub as an indication of EMF usage in
repositories. The corresponding queries are listed in Table 3.

Table 3. Queries for locating repositories through GitHub API.

Evidence Query Extension

Java Model ”extends EObject {” java

Ecore Model GenModel ecore

Generator Model EClass genmodel

(For what it matters, the API search limit is circumvented by recursive query
segmentation which splits a query by setting an upper and lower bound in file size
based on the returned number of total results. This process may miss some re-
sults.) The search API only considers heads of default branches and files smaller
than 384 KB. A list of 5759 GitHub repositories was extracted from the query
results.

4.2 Selection of Repositories

We applied the rule-based mining approach to recover the repository layout in
terms of usage of build systems, project dependencies, and other aspects. We
developed the following classifiers for repositories as an extension of the pattern
catalog of Section 3:

Homogeneous versus heterogeneous build system We search for traces of Mani-
fest, POM, Gradle, and ANT, as modeled by the rules in Listing 6. In the homoge-
neous case, only one such technology is used; otherwise we apply the heterogeneous
classifier. We assume that the heterogeneous situation is harder to understand in
terms of project dependencies.



Single component versus multiple components Based on an analysis of project
dependencies, as described in more detail below, we determine the number of com-
ponents. We assume that repositories with multiple components are special. Such
a repository may be, for example, a ‘zoo’ [28]. Note that a single component can
still imply the presence of multiple (dependent) projects.

Variants This classifier applies when we locate different versions of the same project
in a repository based on the analysis of project dependencies. We assume again that
repositories with variants are special. Such a repository may capture, for example,
versions in a migration process.

EMF ’s default is the use of Manifest files for defining OSGi projects and de-
pendencies. We decided to only include homogeneous repositories using Manifest
files for mining. The analysis of dependencies is based on ‘Bundle-SymbolicName’
elements in Manifest files. Listing 8 presents the rules for inferring the oc-
currence of declarations (predicate sl:decOccures) and references (predicate
sl:refOccures) and OSGi dependencies between Manifest files (predicate
sl:dependsOn):

1 // Extraction of Bundle−SymbolicName declaration.
2 (?file, sl:elementOf, sl:Manifest) StrManifest(?file, ”Bundle−SymbolicName”, ?x)
3 ReplaceAllToUri(?x, ”(;[ˆ,]∗)|\\s”, ””, ?declaration) → // Replace all details.
4 (?file, sl:decOccurs, ?declaration).
5 // Extraction of Bundle−SymbolicName references.
6 (?file, sl:elementOf, sl:Manifest) StrManifest(?file, ”Require−Bundle”, ?x)
7 ReplaceAll(?x, ’(”[ˆ”]∗)”’, ””, ?xi) // Replace all strings.
8 ReplaceAll(?xi, ”(;[ˆ,]∗)|\\s”, ””, ?references) → // Replace all details.
9 SplitToUri(?references, ?file, sl:refOccurs, ’,’).

10 // Creating dependency structure
11 (?a, sl:elementOf, sl:Manifest) (?b, sl:elementOf, sl:Manifest)
12 (?a, sl:decOccurs, ?deca) (?a, sl:refOccurs, ?decb) (?b, sl:decOccurs, ?decb) →
13 (?deca, sl:dependsOn, ?decb).

Listing 8. Rules for extracting OSGi declarations, references and dependencies.

The primitive StrManifest(file, property, value) is a specialized de-
composition of a Manifest file, comparable to StrJava in Section 2.3; it binds
value to a Manifest property in literal form. In the rules shown above, it binds
?x to the required or defined bundles in string representation. The chains of
ReplaceAllToUri, ReplaceAll and SplitToUri process ?x in that it can be
added to the model as declaration or reference. We exclude repositories with du-
plicated declarations (sl:decOccurs) for the same URI (classifier Variants). We
apply an algorithm for detecting connected components to the sl:dependsOn

triples, as inferred by the last rule shown above. We exclude repositories with
multiple components.

The results of the selection steps are depicted in Fig. 3. In what follows, we
only consider repositories with a single component, Manifest usage only, and no
variants. We refer to these repositories as ‘Vanilla EMF repositories’. There are
1438 such projects. These are the projects considered for mining below.



Fig. 3. Number of repositories with a particular build system further partitioned into
homogeneous versus heterogeneous case.

4.3 Pattern Detection

For brevity, we only discuss here the detection of correspondence between Java
and Ecore models; we show the decomposition of an Ecore model; we omit the
rules for Java model detection in the set of available Java files; we also omit
handling Ecore sub-packages.

Consider the beginning of a small Ecore sample file as follows:

1 <ecore:EPackage ... name=”fsml” nsURI=”http://www.softlang.org/metalib/emf/Fsml”
nsPrefix=”fsml”>

2 <eClassifiers xsi:type=”ecore:EClass” name=”FSM”>
3 ...

Listing 9. The first lines of a sample Ecore file.

The following rules decompose an Ecore model into root package and nested
classifiers:

1 // Decomposition of the Ecore file into ...
2 (?x, sl:elementOf, sl:Ecore) → // ... the root package.
3 DecXml(?x, ”/ecore:EPackage”, sl:partOf,?x)
4 DecXml(?x, ”/ecore:EPackage”, sl:elementOf, sl:EcorePackageXMI).
5 (?x, sl:elementOf, sl:EcorePackageXMI) → // ... the nested classifiers in a package.
6 DecXml(?x, ”/eClassifiers”, sl:partOf, ?x)
7 DecXml(?x, ”/eClassifiers”, sl:elementOf, sl:EcoreClassifierXMI).
8 // Extracting URI and nsURI, necessary for detecting correspondence.
9 (?x, sl:elementOf, sl:EcorePackageXMI) →

10 UriXml(?x, ?x, sl:nsUri, ”/@nsURI”). // NsUri for a package as URI.
11 (?classifier, sl:elementOf, sl:EcoreClassifierXMI)
12 (?classifier, sl:partOf, ?package) (?package, sl:nsUri, ?nsUri) // Get package’s nsURI.
13 StrXml(?classifier, ”/@name”, ?classifierName) // Get the classifier’s name as string.
14 UriConcat(?nsUri, ’#//’, ?classifierName, ?uri) → // Build a compound ?uri.
15 (?classifier, sl:uri, ?uri). // Uri for a classifier, i.e., nsURI with appended name.

Listing 10. Decomposing Ecore into classifiers appending a nsURI.

That is, a sl:partOf relationship is inserted along the nesting structure and
fragments are classified by sl:EcorePackageXMI and sl:EcoreClassifierXMI



Fig. 4. Overall pattern sum and
the number of repositories a pat-
tern occurs in.

E J G EJ1 EJ2 EJ3 EE EJc2 EJJ

Sum 4427 2217 2181 1894 96 2598 1376 496 45
Repo 1389 1152 1294 404 43 1127 157 223 18

mean 3.1 1.5 1.5 1.3 0.1 1.8 1.0 0.3 0.0
std 9.8 3.2 2.2 6.2 0.5 7.3 8.3 1.6 0.5
25% 1.0 1.0 1.0 0.0 0.0 1.0 0.0 0.0 0.0
50% 1.0 1.0 1.0 0.0 0.0 1.0 0.0 0.0 0.0
75% 2.0 1.0 1.0 1.0 0.0 1.0 0.0 0.0 0.0
max 261 71 28 103 10 248 251 26 16

cv 3.2 2.1 1.5 4.7 8.2 4.0 8.6 4.5 15.2

Fig. 5. The distribution of detecting a pattern
in the repositories (where the minimum is always
0.0). Row ‘cv’ lists the coefficient of variation.

respectively. This decomposition is handled by the first two rules using the
DecXml to construct URIs in the repository referencing scheme. In con-
trast, the last two rules extract the attributes ‘nsURI’ and ‘name’ using
UriXml and StrXml. The primitives return the recovered content directly as
string or URI, as we need the actual attribute values ‘FSM’ (name) and
‘http://www.softlang.org/metalib/emf/Fsml’ (nsURI).

The following rules establish the correspondence between the elements of
sl:EcorePackageXMI and sl:EcorePackageJava by matching the nsURI.

1 // Correspondence between XMI and Java Packages.
2 (?xmi, sl:elementOf, sl:EcorePackageXMI) (?java, sl:elementOf, sl:EcorePackageJava)
3 (?xmi, sl:nsUri, ?nsUri) (?java, sl:nsUri, ?nsUri) →
4 (?xmi, sl:correspondsTo, ?java).
5 // Correspondence between XMI and Java Classifiers.
6 (?xmiClassifier, sl:uri, ?uri) (?javaClassifier, sl:uri, ?uri)
7 (?xmiClassifier, sl:elementOf, sl:EcoreClassifierXMI)
8 (?javaClassifier, sl:elementOf, sl:EcoreClassifierJava) →
9 (?xmiClassifier, sl:correspondsTo, ?javaClassifier).

Listing 11. Rules recovering the correspondence.

The Java model extraction underlying the latter classification is based on
accessing the nsURI property in the Java AST by a similar primitive UriJava

(not shown here). Corresponding classifiers are aligned by comparing the nsURI
concatenated with the classifier name.

4.4 Results

The results of the case study applied on 1438 Vanilla EMF repositories are shown
in Fig. 4, Fig. 5, and Fig. 6. The discussion is not comprehensive. Overall, the
online corpus features additional results. At the most basic level, we show num-
bers of repositories per pattern and numbers of pattern instances (Fig. 4). The
median pattern occurrence of Ecore (E), Java (J) and Genmodel (G) packages
and the regular correspondence (EJ3) in a repository is 1 (Fig. 5). This indi-
cates that common usage is concerned with only one package. The coefficient of



Fig. 6. Different repository and mining characteristics shown with respect to the
amount of files in a repository. The right column shows how often different types
of patterns occur for some histogram buckets and for the different characteristics.

variation for measuring the relative variability ‘cv’ is the highest for EJ2, EE
and EJJ — the first two patterns indicate problems; the latter pattern repre-
sents a very rare case (1% of the Vanilla repositories). We expect corner cases
and problems to have high variations in pattern occurrence. Having no package
correspondence (EJ1) or a regular package correspondence (EJ3) can both be
considered as common usage. Forgetting to remove Java classifiers (EJc2) can
also be considered a common usage despite being a definite inconsistency. On
the contrary, we detected no repository missing a Java classifier for an Ecore
classifier (EJc1). In Fig. 6, we examine the projects on scales for different char-
acteristics (forks, stars, and mining time) to see how the size of projects relates
to these characteristics and also how the relative frequency of pattern-based
problems or the absence thereof relates to these characteristics. For instance,
we can observe (right-bottom and right-middle charts in Fig. 6) that definite
incompleteness and inconsistency is of much less or no concern with increasingly
more forked or stared repositories.

5 Threats to Validity

The initialization and filtering of the repository list towards ‘Vanilla EMF’ can
be seen as a threat to external validity. We might miss ‘important’ repositories
and thereby produce biased results. Further, due to the complexity of EMF and



the diversity of possible repository layouts, we might potentially miss particular
cases in the rules. We extensively tested our rules in an instance- and parameter-
based manner to cover this internal threat, but some rules are incomplete (e.g.,
regarding the considered build systems) or approximative (e.g., in assuming a
very strict naming scheme for generated classifiers). Our pattern catalog and the
rating of patterns, i.e., potential or definite incompleteness or inconsistency, are
potentially subjective, even though we have extensive experience with EMF.

6 Related Work

The reported research is original in terms of (i) leveraging an inference- and
rule-based approach (as opposed to using any computational approach which
would operate on more ‘complete’ representations) and (ii) developing a pattern
catalog for EMF usage in repositories. However, there is related research in
the broader areas of mining software repositories, program comprehension, and
reverse engineering which we group accordingly below.

Pattern Detection This may concern design or API-usage patterns. For in-
stance, in [36], API-usage patterns are mined based on structural, semantic,
and co-usage similarity for the accessed API methods and fields; in [34], logic
metaprogramming is used to detect patterns in a logic layer on top of Java ASTs
using JDT.

Classification of Artifacts In [21], language usage trends are analyzed in 22
open source software projects by counting files with language-specific file exten-
sions, e.g., ‘.py’, and certain file-name patterns, e.g., ‘README’. In [26], the
use of different Eclipse-based MDE technologies is examined on GitHub repos-
itories. The approach combines search based on technology-specific extensions
and string-based content search, just like in our case study (Table 3). In [33], a
large dataset of UML models is collected from GitHub by script-based inspection
of downloaded images (e.g., ‘.jpg’), standard UML formats (e.g., ‘.uml’) and tool
specific formats (e.g., ‘.argo’). In [32], the number of languages used and their
relatedness to each other is analyzed in a random set of 1150 GitHub repositories
relying only on metadata and version history.

Linking Artifacts In [41], traces between XML documents are analyzed using
an imperative rule language and XML technology such as XPath. This work
exceeds ours by considering references encoded in text fragments that are then
mined using NLP-techniques. In [8], the distribution frequency at GitHub is
empirically compared to CRAN for R packages. Further, package dependencies
between projects’ ‘DESCRIPTION’ files are mined to explore inter-repository
dependency problems. In [30], a system’s ground truth architecture is recovered
by analyzing dependencies in the build configuration. To raise accuracy, the
folder layout is considered. Arguably, our work relates to traceability recovery [7,
22, 15, 31, 38].

Fact extraction In [20], metrics are computed in multi-language repositories
by reusing existing parser technology that is part of Eclipse. In [37], API usage
in Java-based GitHub repositories is analyzed by parsing the code and resolving



method calls to APIs. Their approach exceeds ours in using JDT type reso-
lution which we may want to incorporate into our rule-based language model.
In [1], OO-specific ASTs (i.e., Java) are converted into RDF triples. This en-
ables data extraction through SPARQL-queries on a triple store. In [39], a rule-
based approach similar to ours is presented that relies on parsing code into a
knowledge-discovery-model (KDM). It is used to mine dependencies in Java EE
application. While we also employ AST structures, we rely on selective fact ex-
traction as opposed to full materialization of the involved artifacts. In [11–13],
the infrastructure, the domain specific language and applications of Boa, a frame-
work for structured data extraction targeting repositories, is described. While
the actual purpose and the surrounding infrastructure of our approach is highly
comparable, the computation substantially differs in that Boa’s fact extraction
is not driven by previously inferred facts. The Boa language is compiled to a
map-reduce framework to be executed in parallel. Such distribution is difficult
to align with our rule-based inference mechanism.

Analysis of Changes In [6], the frequency of code changes in Java-projects
using Hibernate is traced while differentiating between data model, mapping,
performance configurations, and query calls. In [23], the dependencies between
projects considering build files specific to JavaScript, Ruby, and Rust are ex-
amined and their evolution is traced. In our future work, we will take version
history into account.

7 Conclusion

In this paper, we have provided some insight into basic variation points and
potential completeness and consistency problems with using EMF and detecting
or maintaining such usage in repositories. We have used a rule-based approach
to detect patterns of usage.

In future work, we would like to analyze evolution of repositories in terms
of layout and pattern instances. Further, we would like to increase precision
with regard to some aspects of correspondence, completeness, and consistency
by integrating type resolution with Java classpath recovery. Moreover, we also
work on a more profound generalization of referring to and accessing ‘arbitrary’
code or model elements across technological spaces: codename URA (unified
resource accessor). Ultimately, we would like to move from (small) patterns of
technology usage to inferring usage of more complex and modular megamodels
for technology documentation [17].
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35. C. D. Roover, R. Lämmel, and E. Pek. Multi-dimensional exploration of API usage.
In Proc. ICPC 2013, pages 152–161. IEEE, 2013.

36. M. A. Saied and H. A. Sahraoui. A cooperative approach for combining client-
based and library-based API usage pattern mining. In Proc. ICPC, pages 1–10,
2016.

37. A. A. Sawant and A. Bacchelli. A dataset for API usage. In Proc. MSR, pages
506–509, 2015.

38. A. Seibel, R. Hebig, and H. Giese. Traceability in model-driven engineering: Effi-
cient and scalable traceability maintenance. In Software and Systems Traceability.,
pages 215–240. Springer, 2012.

39. A. Shatnawi, H. Mili, G. El-Boussaidi, A. Boubaker, Y. Guéhéneuc, N. Moha,
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