Operationalizing Threats to MSR Studies by Simulation-Based
Testing

Johannes Hartel
University of Koblenz
Germany
johanneshaertel@uni-koblenz.de

ABSTRACT

Quantitative studies on the border between Mining Software Repos-
itory (MSR) and Empirical Software Engineering (ESE) apply data
analysis methods, like regression modeling, statistic tests or correla-
tion analysis, to commits or pulls to better understand the software
development process. Such studies assure the validity of the re-
ported results by following a sound methodology. However, with
increasing complexity, parts of the methodology can still go wrong.
This may result in MSR/ESE studies with undetected threats to
validity. In this paper, we propose to systematically protect against
threats by operationalizing their treatment using simulations. A
simulation substitutes observed and unobserved data, related to an
MSR/ESE scenario, with synthetic data, carefully defined according
to plausible assumptions on the scenario. Within a simulation, un-
observed data becomes transparent, which is the key difference to
a real study, necessary to detect threats to an analysis methodology.
Running an analysis methodology on synthetic data may detect
basic technical bugs and misinterpretations, but it also improves
the trust in the methodology. The contribution of a simulation
is to operationalize testing the impact of important assumptions.
Assumptions still need to be rated for plausibility. We evaluate
simulation-based testing by operationalizing undetected threats in
the context of four published MSR/ESE studies. We recommend
that future research uses such more systematic treatment of threats,
as a contribution against the reproducibility crisis.
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« General and reference — Empirical studies; « Software and
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1 INTRODUCTION

Quantitative studies on the border between Mining Software Repos-
itories (MSR) and Empirical Software Engineering (ESE) apply data
analysis methods, like regression modeling, statistic tests or cor-
relation analysis, with the aim to understand, and finally improve
the software engineering process [1, 2]. Recent research examines,
e.g., defects [3], pull accepts [4] or reviewing activity [5]. It uses
the data mined from repositories to make statements or tools that
ease software development in general (see [6-8]).

1.1 Empirical Challenges on Repositories

Opposed to producing empirical insights by well-understood ran-
domized experiments, producing empirical insights using observa-
tional repository data is highly challenging.

The complexity reaches its peak in examining causation, crucial
for every scientific domain (see general work of leading authors ex-
amining causation [9]). Other challenges that arise when examining
software repositories are the sampling process, control variables or
correlated variables.

Such challenges complicate the methodology of MSR/ESE studies
in that the validity cannot be judged easily. Informal practice is
to judge the study results according to previous knowledge and
expectations, given by anecdotes or references (e.g., as done in [10]).
However, validity often remains vague in such informal discussion.

1.2 Simulation-Based Testing

In this paper, we propose to systematically protect against threats
by operationalizing their treatment using simulations.

We map the core challenges of empirical MSR research to a miss-
ing data problem. Study results are unobserved variables (such as
parameters in a regression model, correlation, or confidence intervals)
inferred from observed variables that are mined from repositories
(such as defects or changed lines-of-code). We argue that the crucial
point, complicating the treatment of threats, is that we do not know
the unobserved variables definitely — otherwise we would not need
to do empirical research.

We cannot contribute any improvements to the conceptual prob-
lem of unobserved variables in real studies; however, we can opera-
tionalize tests for a study’s methodology working with them.

We propose to use simulations that substitute observed and un-
observed variables, related to an MSR/ESE scenario, with synthetic
variables, carefully defined according to plausible assumptions on
the scenario. Within a simulation, unobserved variables become
transparent, which is the key difference to a real study, necessary
to detect threats to an analysis methodology.
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Running an analysis methodology on synthetic variables may
detect basic technical bugs and misinterpretations, but it also im-
proves the trust in the methodology.

1.3 Plausibility of Simulations

The contribution of a simulation is to operationalize testing the
impact of important assumptions on the results of a methodol-
ogy. Assumptions are given in terms of substitutions of variables.
Whether threats detected by such simulations can be transferred
back to real studies, requires rating the plausibility of underlying
assumptions in the concrete case.

1.4 Evaluation

We prove that simulation-based testing contributes to the treatment
of threats to validity in four published MSR/ESE studies, using very
basic substitutions that, we believe, are plausible in MSR/ESE. The
full simulation-based tests are provided online!.

1.5 Contributions

Our contributions are: i) the presentation of simulation-based test-
ing for MSR/ESE studies to operationalize threats to validity; ii)
an evaluation showing the relevance of simulation-based testing
by applying it to published studies in MSR/ESE; and iii) an initial
catalog of relevant threats to MSR/ESE studies.

1.6 Road-Map

Sec. 2 introduces simulation-based testing; Sec. 3 introduces a basic
example; Sec. 4 is an acknowledgement to the author of the original
work that we examine in the following sections; Sec. 5-8 apply
simulation-base testing to existing studies in MSR/ESE; Sec. 9 lists
related work; Sec. 10 concludes.

2 SIMULATION-BASED TESTING

This section introduces simulation-based testing.

2.1 Models

We start with a definition of a model, and the corresponding termi-
nology, as we use it in this paper. A model consists of two parts:

e Variables: Variables label relevant data for the research.
Typical variables in MSR/ESE are the occurrence of defects,
lines-of-code, or effect strengths. Some variables can be ob-
served (e.g., lines-of-code); some variables can only be ob-
served with uncertainty (e.g., defects due to inaccuracy of
SZZ [3]), other variables are unobserved and need to be in-
ferred as the goal of an empirical study (e.g., effect strength
of lines-of-code influencing defects).

e Relationships between variables: Relationships describe
how variables relate to each other. Relationships may be
functional or stochastic, the latter invokes a notion of uncer-
tainty. Relationships can never be observed directly, so they
are always assumptions, part of our model.

A model can use relationships to infer, predict or simulate vari-
ables using other variables.

Uhttps://github.com/topleet/MSR2022
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Figure 1: Replacing the reality by a simulation: The substitu-
tion of observed (blue) and unobserved (red) variables with
synthetic variables (white), allows checking the correspon-
dence between identified variables (green) and the synthetic
counterparts (white). Detected threats to validity can possi-
bly be transferred back, if the substitution is plausible.

Depending on which variables are observed or not, how un-
observed variables are treated, and which relationships are used,
authors may call this procedure differently: The model may predict
unobserved defects; it may infer parameters relevant to a relation-
ship; or it may simulate complete data sets following plausible
assumptions on unobserved variables (like on the relationship be-
tween defects and lines-of-code). In the following, we will use the
term identify as a summary of this procedure.

2.2 Methodology of an Empirical Study

A standard empirical study takes the following steps: The study
converts its hypothesis on reality, like the software development in
a repository, into a single or many such models; the data collection
mines a sample of repositories to replace some unobserved with
observed variables; the model attempts to identify the remaining
unobserved variables which are relevant to research. Finally, the
results of the different models are compared and conclusions on
the reality are drawn.

2.3 Reality as a Black-Box

The crucial point why the treatment of threats is difficult in such
methodology is because unobserved variables and relationships are
not known in general. They are hidden in some sort of black-box
dictated by reality (see the illustration in Figure 1 which presents
the conceptual problem with a focus on variables). This makes it
impossible to test the analysis methodology in a classical sense, i.e.,
comparing the identified variables with the correct counterparts
from reality.

2.4 Simulation as a Substitution for Reality

A simulation-based test creates a second model which substitutes
observed and unobserved variables, related to an MSR/ESE scenario,
with synthetic variables, carefully defined according to plausible
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assumptions on the scenario. Such simulation sets unobserved vari-
ables, defines them according to assumptions on distributions, uses
assumed relationships (in reverse), and replaces other related vari-
ables accordingly.

Technically, a simulation implements stochastic or functional
relationships between variables, i.e., drawing variables from random
number generators (stochastic) or producing variables according
to basic mathematical functions (functional). Such simulations boil
down to very basic code, not needing specific libraries or extensive
statistic background knowledge.

A study’s original methodology then processes the synthetic
variables as if they were the real data. The variables which are
unobserved in the original study are still kept hidden in the simu-
lated study run. The original identification mechanism is executed.
Finally, the correspondence between the identified variables and
the synthetic counterparts can be checked objectively because ev-
erything in the simulation is transparent.

This objective answer on identifiability, given by checking the
correspondence, can be used to decide if the methodology is prone
to a threat or not. The simulation operationalizes this threat.

2.5 Plausibility of Simulations

The contribution of a simulation is to operationalize testing the
impact of important assumptions on the results of a methodol-
ogy. Assumptions are given in terms of substitutions of variables.
Whether threats detected by such simulations can be transferred
back to real studies, requires rating the plausibility of underlying
assumptions in the concrete case.

There are formal ways to check assumptions, but often there
are subjective aspects, too. Hence, simulation-based testing still
requires a reader or reviewer to rate the plausibility of assumptions —
but compared to an informal discussion - simulation-based testing
captures the assumptions and corresponding threats in a much
more systematic way.

When designing, reviewing or revising a methodology, the aim
is to stick to the most basic methodology to identify unobserved
variables, which is most resistant against the important threats
operationalized by simulations. A catalog covering simulations of
typical threats in MSR/ESE may help in such case. However, in
some cases, simulations may also detect unidentifiable variables
given the assumptions. In this case, the simulation remains as a
threat to validity or renders the research aim impossible.

2.6 Generality, Complexity, and Automation

This section provides a preliminary answer on the generality, com-
plexity, and the potential for automation in simulation-based testing.
However, follow-up work is needed by us/the community.

We believe that there are three study types using simulation-
based testing, increasing in generality, complexity and manual
effort, allowing some sharing of work on the treatment of threats:

o A ‘passive study’ relies on an existing catalog of prototypical
MSR/ESE simulations (such as the cases we will provide in
the remainder of this paper) and transfers insights (directly
read from the simulation) to the given empirical scenario.
The focus on such a catalog limits us, but it also implies an
ease of application with the potential for automation.

MSR °22, May 23-24, 2022, Pittsburgh, PA, USA

e An ‘active study’ goes one step further and applies minor
modifications to existing simulations, tailoring them towards
a new empirical scenario. Understanding of assumptions,
methodology, and threats will be sharpened by putting them
into the context. Tailoring is more flexible, more complicated,
and less automated.

e An ‘original study’ contributes simulation to capturing novel
understanding of threats in MSR/ESE studies, thereby extend-
ing the catalog we may have started with. Bias on bug-fix
and historical data definitely calls for extensions to our pa-
per’s catalog. Contributing simulations is original work, it is
fully flexible, but cannot be automated at all.

3 SIMULATION-BASED TESTING IN A
NUTSHELL

We start with a trivial example on how a simulation may oper-
ationalize threats to a study’s methodology. We will check the
application of a basic logistic regression model, comparable to the
methodology in many past and recent studies on software defects
(e.g., in [11-19]).

3.1 Original Methodology

A study that uses logistic regression to examine defects formulates
a model that describes the relationship between some observed
variable X, typically a software metric, and the observed defect Y.
Both variables can be mined from repositories. Understanding the
relationship is a central aim of such research, e.g., in [11-19].

The most basic form of a logistic regression characterizes the
relationship in terms of two unobserved variables, identified using
the observed X and Y variable:

e Intercept (alpha): The intercept is an unobserved variable
reflecting the average probability of defects when X = 0.

e Slope (beta): The slope is an unobserved variable reflecting
the change in the probability of defects when X increases by
one unit.

To exemplify this analysis, we borrow data on the elasticsearch
project, published in the context of examining defects in [12]. We
use a binary defect classification for our observed variable Y (com-
puted according to SZZ [3]). The variable X is the stated-log trans-
formed lines-of-code changed by a commit. For further details, we
refer to the original study.

The code we use to invoke a logistic regression model in R is
given in Listing 1:

1| model « gIlm(Y ~ X, family = binomial())

Listing 1: The original methodology applies a logistic
regression to model the relationship between X and Y.

The model reports that the unobserved intercept is —3.28 and
the slope is 0.45. From an empirical perspective, the interesting
aspect is the strength and the direction of the relationship between
changed lines-of-code and defects. Because of the positive slope
(0.45), we may now conclude that commits with more changed lines
are more dangerous, as this increases the probability of defects.
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3.2 Reality as a Black-Box

In such trivial case, the methodology is often not further questioned.
We trust in the fact that we apply the logistic regression correctly,
that the software works, that we have enough data, and that our
interpretation is sound - although we have never seen the real
values of the unobserved variables and compared them with our
identified values —3.28 and 0.45.

We may implement additional checks by cross-validation. How-
ever, cross-validation is an important remedy against overfitting,
it does not resolve the conceptual issue of not knowing the real
intercept and slope?.

3.3 Simulation as a Substitution for Reality

We will now substitute some observed and unobserved variables
with synthetic variables, carefully simulated according to very basic
assumptions on this scenario. We provide this simulation code in
Listing 2 and as an online resource. All simulation code in the paper

is written in standard R, not using libraries>.

1| # Kept observed variables.

2| N« N # Number of commits.

3] X X # (vector) Keep the original variable X.
4
5| # Substituted unobserved variables.

6| alpha « -3.0

7| beta < 0.4

8| prob« 1/ (1 + exp(-(alpha + beta * X))) # (vector)
Assumption of the logistic regression model on
the relation between X and Y.

0| # Substituted observed variable Y.
11| Y < rbinom (N, size = 1, prob = prob) # (vector)
Assumption on the output distribution.

Listing 2: The R code substitutes variables of the original
methodology by synthetic variables.

The first three lines of Listing 2 denote that we keep the original
variable X and the number of observations N to stick close to the
original data.

Next, the code assigns the unobserved intercept and slope vari-
able in terms of alpha and beta. This is the crucial part of the
simulation code, where the unobserved variables get replaced by
synthetic variables. We invent both values. We use slightly different
values, compared to those produced in the original study run (-3.0
for the intercept and 0.4 for the slope). We will test other options
in the next section.

Nothing of the remaining code (line 8 and 11) is arbitrary. It
follows the basic assumptions of a logistic regression model on
the relationship between X and Y (just run in reverse). MSR/ESE
studies (e.g. [11-19]) make this assumption implicitly when using
a logistic regression models; authors are aware of this definition.

The code specifies the exact probability prob of facing a defect
as a (logistic) function of alpha, beta and X. This vector of exact
probabilities is another unknown variable that can never be ob-
served. In reality, we can just observe the final defect classification
Y. It is defined by a stochastic function producing uncertainty, a

?In causal inference, meeting collider variables, cross-validation of prediction perfor-
mance may even be misleading (see general work [20], page 192).

3We remind the reader of vectorized operations in R; an introduction is beyond the
scope of this paper.
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Figure 2: Identified unobserved variables intercept (alpha)
and slope (beta) in 100 repeated simulation runs.

binomial distribution (rbinom) with one trial and the probability
set to the vector prob. It is a simple random number generator?.

3.4 Correspondence, Uncertainty, and
Parameterized Tests

We can now process the synthetic data as if it was the real data,
using the original methodology from Listing 1 with one important
difference: We know alpha, beta, and prob.

3.4.1 Correspondence. The original methodology identifies the
unobserved variables in the simulated run to be alpha ~ —2.97 and
beta ~ 0.39. We can objectively deny a threat to the methodology
under the substitution because alpha and beta are very close to
those values set in the simulation (3.0 and 0.4). However, there
are two remaining questions on such correspondence.

3.4.2  Uncertainty. First, it is unclear why the methodology does
not exactly meet the synthetic alpha and beta. The answer is explicit
in the simulation. It is because of the stochastic relationship used
between prob and Y (Listing 2, line 11). The methodology only
observes Y, but the corresponding prob is not known for sure;
hence, also the identified values for alpha and beta are uncertain.
This is one reason why studies often report on confidence estimates.

If repeating the simulation, using different initial seeds, the iden-
tified alpha and beta distribute as depicted in Figure 2. This shows
that on average, the identified alpha and beta variables are excellent,
but not totally exact.

3.4.3 Parametrized Tests. Second, it is not clear what happens if
we use different synthetic values for alpha and beta. The simulation
can examine this by going through multiple combinations of both,
checking the implications on the identification by the methodology.

The results for a grid of 30 X30 combinations is shown in Figure 3
(left). The plot illustrates the correspondence between the identified
and synthetic beta (the error under the substitution). It shows that
if synthetic alpha and beta are both high or low, identification
struggles, producing a high error.

The phenomenon is well-known, but often not calibrated to the
particular MSR/ESE scenario. If counting the number of defects in

“In R, random number generators are vertorized and start with a letter r followed by an
abbreviation for the distribution family (we will see rbinom, rnorm and rpoisson).
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Figure 3: Left: Simulated alpha and beta and the correspond-
ing error in the identification, depicted as red dots (red in-
creases with error). Right: The total sum of defects in the
synthetic variable Y (log scale) and the relation to the error.

the synthetic Y variable and relating it to this error, we see that the
identification only fails on extremely high or low defect counts (see
right of Figure 3).

We know this under the name class-imbalance [21] or in terms of
instructions on events-per-variable (EPV) [22]. Our simulation does
detailed suggestions, i.e., that if we have more than approximately
400 defects in the data set, the methodology should be safe (from
too low defect counts). In our real data set, we have 5771 defects,
so we can deny the plausibility of this threat.

4 ACKNOWLEDGEMENT

What we will do in the remainder of this paper is difficult, as we
will criticize published methodology that appears in MSR/ESE.

We first want to acknowledge the original work of the authors in
the studies, subject to the following illustrations. All studies have
been selected because of their clarity and originality. However, we
believe that evaluating the importance of simulation-based testing
for handling threats to validity, is not credible on unpublished
examples. We need to continue on real studies.

The threats operationalized in the following examples are also
relevant to other published studies, and just an excerpt of what can
be done by simulation-based testing. We believe that reoccurring
threats are an inevitable aspect of a scientific process, rather than a
fault of the people who run into the threats.

Making such threats more explicit is a step towards improving
the scientific process, to assure that future studies improve, and a
contribution against the reproducibility crisis. The following sec-
tions may be considered as an initial catalog providing simulations
of important threats to MSR/ESE studies.

5 DEPENDENT OBSERVATION (CASE 1)

After laying the foundations, we start examining a first publication
using simulation-based testing. The study is by Alali et al. [23]. The
work describes the ‘typical commit’.

We believe that the major part of this study can be read with-
out additional limitations. However, this study runs into a specific
methodological threat, that we believe, is characteristic for the anal-
ysis of repository data. The authors make statements on uncertainty,
ignoring the structure of the analyzed sample of commits.
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5.1 Original Methodology

The original study mines the history of nine open-source software
systems. It reports on the number of lines, files, and hunks changed
by commits. Further, the correlation between the variables is de-
scribed.

Examining the ‘typical commit’ indicates that the statements
done by the study are not necessary specific to the nine observed
repositories. Statements may also hold for other repositories, those
that the authors had in mind, but did not examine due to computa-
tional overhead. Such sampling is standard practice in MSR [1].

However, in this case, the methodology requires statements on
uncertainty because variables identified using the nine reposito-
ries might not exactly correspond to values in other unobserved
repositories. A methodology can give such statements in terms of
confidence estimates.

Alali et al. report on confidence, i.e., p-values for the correlation
between the variables. In the remainder, we will adjust this and
report on confidence intervals, since p-values are less intuitive for
most readers. Threats for p-values are the same and can be shown
the same way.

We assume that the original study computes p-values according
to standard practice because the paper does not report on counter-
actions against dependent observations. In our reproduction of the
original methodology, we also stick to standard practice’.

5.2 Substitution A

The data of [23] is not available, so we go for a completely synthetic
version of this study. We simplify the original research and examine
the correlation between just two variables X1 and X2.

Listing 3 shows substitution A, which simulates two correlating
variables in a structured sampling process.

1| X1all < NULL # X1 collected over repositories.
2| X2all « NULL # X2 collected over repositories.
3| N<— 100 # Number of repositories.

5| for (repo in 1:N) {
6 rho < 0.2 # Rho is the same in each repository.
M 100 # Number of commits in each repository.

8 # Simulating X1 and X2 for a repository.
X1 < rnorm (M, mean = 0, sd = 1)
( X2 & rnorm (M, mean = 0, sd = 1)

1 # Producing the correlation (rho).

2 sigma < matrix(c(1, rho, rho, 1), 2, 2)
3 X & cbind (X1, X2) %+% chol(sigma)

A # Collecting X1 and X2.

5 X1all « c(X1all, X[, 1

6 X2all « c(X2all, X[, 2

5

D
D

1
1
1
1
1
1
1
1

}

Listing 3: Simulating two correlating variables X1 and X2 for
100 repositories, each with 100 commits.

The code produces data for N=100 repositories, each with M=100
commits. Within a repository (inside the loop), we simulated two
variables X1 and X2 for M commits following a normal distribution
(rnorm). A correlation between X1 and X2 is simulated using the
Cholesky decomposition® with rho = 0.2.

5 All our reproductions of other papers are fully available online to guarantee the
reproduction of this paper.

®The details on how to simulate correlation are not relevant for understanding this
case, but we want to allow copy-and-past, so we show it.
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Figure 4: Ten simulation runs showing confidence intervals
for rho, identified based on 9 repositories (gray line), and
rho computed on all 100 repositories (black dot). We distin-
guish between independent (left) and dependent observa-
tions (right) produced according to substitutions A and B.

Finally, we simulate the random sampling step (see the online
resources for the complete code). We randomly decide on 91 repos-
itories where we consider X1 and X2 as unobserved variables, and
9 repositories where we consider X1 and X2 as observed variables.

5.3 Substitution B

The threat of dependent observations is added by a small modifica-
tion to substitution A.

1| for (repo in 1:100) {

2 rho < rnorm(n = 1, mean = 0.2, sd = 0.23) # A
repository -specific variation in the
correlation.

iF

Listing 4: Simulating a repository-specific variation in the
correlation rho.

In substitution B, the correlation rho is sightly different for each
repository, but on average 0.2, since we draw it from a normal
distribution with mean 0.2. The standard deviation (sd) decides on
the severity of the threat, we set it to 0.23, but other configurations
can be explored in the same fashion as done in Sec. 3.4.3. The rest
of the substitution is the same as in the previous case.

5.4 Correspondence

The original methodology used by Alali et al. [23] to report on
the uncertainty of correlation works under substitution A, but not
under substitution B. Ten simulation runs suffice to show this.

We compare the correlation (rho) computed on all 100 reposito-
ries, including the unobserved, with the confidence interval iden-
tified according to the original methodology on the 9 observed
repositories. Since we report on confidence intervals of 95%, 0.5
out of 10 simulation runs are allowed to fail. When having a look
at Figure 4, we see that the number of failing confidence intervals
is different in both substitutions:

e Under substitution A (left), almost all confidence intervals
include the correct correlation.

o Under substitution B (right), we see that in 4 out of 10 sim-
ulation runs, the methodology fails to include the correct
correlation in the confidence interval. The small variation
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regarding repositories has a big impact for statements on un-
certainty. The chance that our confidence interval includes
the correct correlation, is almost comparable to flipping a
coin.

5.5 Plausibility and Conclusion

We have shown that dependency in observations is an evident
threat for statements on uncertainty. Indicators for the plausibility
of substitution B, compared to substitution A, can be found in every
analysis that proves that repositories are different (e.g., see the
highly different slopes in regression models computed on different
repositories in [11, 12]). Even if there is no dependency of correla-
tion in real repositories, we can at least expect the methodology to
be prepared for this threat.

We again want to emphasize that we only criticize statements
on uncertainty, which are overall rare in [23]. However, we started
with this case because we believe that the general problem of depen-
dent observations and the impact on reported uncertainty is still
underdeveloped in MSR/ESE research. Related threats might appear
in several places when examining highly structured repository data.
This may lead to study reproductions that are guaranteed to fail.

Generic advices on resolving this issue are difficult to give, but
can be guided by evolving the presented simulation. In general, a
resolution informs a model of the structured sampling process (e.g.,
see work on hierarchical/multilevel/mixed-effect models [24]).

6 PREDICTION OR CAUSATION (CASE 2)

The next case that we examine is an experience report on analytical
defect modelling, done by Tantithamthavorn et al. in [25]. The
report discusses challenges and actionable guidelines. We expect
this report to have a big impact on our community.

We selected this work because of its progressive understanding
of defect modeling to be more than just defect prediction. How-
ever, this work fears to name the actual challenge, i.e., examining
causation.

We will accomplish this view by operationalizing threats of claim-
ing causation, showing how to systematically extend the guidelines.

6.1 Original Methodology

The original work provides guidelines for other studies and thereby
lists methodological steps exactly. Practitioners may use an ana-
lytical defect model not just to predict defects, but also to answer
questions, like ‘whether complex code increases project risk’ (copy
from [25]). Project risk refers to defects.

Within this setting, the term increases can be understood in
different ways, and the original study is unclear on this:

e Do we wish to compare or relate complex code with project
risk? If so, we can use this insight to (mentally) predict one
variable using the other.

e Do we wish to know if modifying the complexity of code
causes the project risk to change? This insight is efficient
to guide our decisions. It corresponds to what most people
have in mind when hearing the statement above.

Tantithamthavorn et al. and many other researches in MSR/ESE
fear to claim causation (second statement). This is not surprising.
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Causation is difficult to examine, definite claims are impossible,
even in randomized experiments.

On the other hand, most of the operational decisions should be
driven by causal relationships. Their examination is the crucial
point of modern empirical research (see the preface of [9]). Even
more dramatic, statements on the relation between complex code
and project risk are intrinsically hard to understand if not aiming at
causation. Understanding may get harder if a defect model grows,
without having causation in mind, including more variables.

We will show how claims on causation are possible within addi-
tional assumptions, operationalized by simulations. Often they are
plausible in that we can claim causation within manageable threats.

6.2 Substitution C

Following the definition of Imbens et al. [9] (page 6), a claim for
causation can unambiguously be given by comparing the potential
outcomes of different treatments in exactly the same situation. Re-
ality does not allow observing more than one potential outcome in
the same situation, but a simulation-based test allows synthesizing
both.

X« rnorm(N) # Synthetic variable X.

2| # Producing two potential probabilities.

s| prob_pot1 < 1 / (1 + exp(-(alpha + beta = X)))

i| prob_pot2 < 1 / (1 + exp(-(alpha + beta = (X + 1))))

s| # Corresponding potential defects.
6| Y_pot1 < rbinom (N, size = 1, prob = prob_pot1)
7| Y_pot2 « rbinom (N, size = 1, prob = prob_pot2)

Listing 5: Simulating causation.

Listing 5 implements such substitution, using ‘treatment’ X, but
also continuing with the modified X+1, in exactly the same situation.
The relationships are the same as in the basics on logistic regression
provided in Sec. 3. In the simulation, we get two potential outcomes.
According to the definition, the difference between Ypos1 and Ypor2
reflects the causal relationship between X and Y.

6.3 Correspondence

According to our previous strategy of hiding synthetic but unob-
served variables from the original methodology, we run the original
methodology just using one of the potential outcomes, keeping the
other hidden. However, we can still identify the causal relationship
by the logistic regression under this substitution.

Multiple runs of the simulation, with different synthetic val-
ues for beta, shows that there is a clear correspondence between
the identified beta on the observed variables, and the difference
between both potential outcomes (see Figure 5).

6.4 Plausibility and Conclusion

This very basic simulation shows that under clear assumptions,
claims on causation are possible. We are not the first who noticed
this (for a summary of past work, see [9], page 23).

However, the assumptions of substitution C are tough: The effect
of X (beta) is stable across all our observations. We assume that
there is no dependency between observations. We assume that X
is just a random variable, not influenced by anything else.

The critical assumption, that the variable X is not influenced by
anything else, for instance, can be subject to further extensions to
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Figure 5: Identifying causation under strong assumptions
(substitution C).

the simulation. A methodology may react by the control of variables.
We do not show this, but evolving the simulation is straightforward.
Hence, we can still formulate plausible claims on causation, even if
we expect an influence.

Our simulation shows that a clean notion of assumptions, opera-
tionalized by simulations, can be a great help when talking about
causation and corresponding threats. It can be used to extend the
guide by Tantithamthavorn et al., being more precise on what the
interpretation of defect models is.

7 CONTROL OF VARIABLES (CASE 3)

In [26], the authors propose a new metric intended to reflect a
developers’ ability to correctly understand the code. A basic statistic
test shows a relation between the new metric and defects.

The study suggests the usage of such finding in prediction. How-
ever, a big part of the conclusions drawn in the study are of sublim-
inal causal nature and prediction is not evaluated. We will focus on
causation, but also conclude on prediction.

7.1 Original Methodology

The original study follows the standards in defect modeling as de-
scribed in Sec. 3. It relates a novel experience metrics E to defects Y.
The methodology is slightly different because the authors show the
relation using a basic statistic test, rather than a logistic regression.

The novel experience metric is defined using the cosine similarity
between files touched by a commit, and the lexical background of
the contributing developer (back). This background is composed
out of all modifications done by the developer in the past. We refer
to the original work for details on how to compute the cosine.

Our first intuition reading the original paper was that the tech-
nical computation using the cosine may accidentally influence the
outcome of the methodology. We expected a potential correlation
between the cosine and the file size.
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This is a serious threat as we know from works in MSR/ESE,
e.g., [10-12], and from Sec. 3, that the file size (or lines-of-code)
strongly relates to defects. Such confounding effect of the new expe-
rience metric over variable files size would not be surprising and
not much of interest.

7.2 Substitution D

This means that the original methodology needs to protect against
such false conclusions. We can operationalize a test for a protection
by a simulation. This substitution simulates a part of the metric
computation to produce variable X and E using the cosine.

1| N« 8000

)| X «— NULL

E « NULL

for(n in 1:N){

5 nTerms < 200

# Generate two random term vectors.

back < rpois(n = nTerms, lambda = 5.0)

8 file & rpois(n = nTerms, lambda = 0.1)

9 # Compute the similarity defining experience.
10 E« c(E, cosine(back, file))

1 # Size of the file.

12 X e c(X, log(sum(file) + 1))

i3]}

5| alpha «~ -3.0
16| beta < 0.4
17| prob <= 1 / (1 + exp(-(alpha + beta =« X)))

19| # Substituted observed variable Y.
201 Y « rbinom (N, size = 1, prob = prob)

Listing 6: Simulating the computation of experience.

Listing 6 produces N synthetic file and background pairs using
vectors synthesized by a Poisson distribution (stochastic function).
The number of terms (nTerms) in the VSM is set to 200. The Pois-
son distribution works well for simulating term vectors because it
only produces discrete positive vector entries. The average term
frequency is set by the lambda parameters. The code collects the
new experience metric E defined by the cosine, but also the corre-
sponding file size X as the stated-log transformed sum of its terms
(as often assumed in defect modeling). Alternatives can easily be
explored using the online material. According to our knowledge,
they do not influence our conclusions under substitution D.

Finally, the code synthesizes the probability prob and the defects
Y, as we have done in the previous sections. In this substitution,
we assume that there is no effect of E. If the methodology manages
to detect no effect of E, we are safe, at least under substitution D.

7.3 Correspondence

However, the original methodology of [26] does not manage to
handle substitution D correctly. The Mann-Whitney test used in
the original study rejects the null-hypothesis in approximately 45
out of 100 simulation runs at a confidence level of 95%. This means
that the result is almost comparable to flipping a coin. The reason
gets clear when having a look at Figure 6, showing the strong
positive relation between X and E. As expected, it is an artifact
of the technical computation of the cosine. The very simplistic
Mann-Whitney test accidentally attributed the effect of X to E.
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puted by the cosine in a single simulation run.

7.4 Plausibility and Conclusion

The previous substitution shows how a methodology is technically
not in position to correctly produce negative results under given
assumptions. Substitution D is plausible enough in that we can
demand a methodology to resolve it. Claiming that a developer-
specific factor relates to defects, while it is just the file size, can
hardly be justified as a novel insight. This holds for examining
causation as well as for prediction.

We selected this work because it is an instance of applying an
over-simplistic test. When working with observational data, one
needs to be prepared for relationships to other variables, like a
file’s size. Basic statistic tests (whether parametrized or not) seldom
suffice to answer research questions correctly on observational
MSR/ESE data.

7.5 Revision

Indeed, there are ways to improve the original methodology. We
want to appreciate that the original data is provided by the authors
so that we can rearrange the statistical checks.

We convert the original test (Mann-Whitney) into a logistic re-
gression model, which allows the control of variables. The control
for the variable file size is the mandatory step that resolved the
methodological threat. It blocks the confounding effect of the new
experience metric over file size, in that we get the direct effect of
experience that we are interested in. Such a model indeed succeeds
in not detecting an effect on the synthetic data produced by substi-
tution D. See the online resources extending the simulation for this
insight.

We now apply the methodology (with and without control) to the
real data and revise the original study. The relevant information on
the logistic regression models can be found in Table 1. For further
details, we refer to the reproduction code.
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Table 1: A model with and without control, showing the effect
strength, the usual significance encoding, and AIC.

Variables Original ~Control
Experience | 1.42"**  0.12
File Size 0.01***
AIC 19968 18282

File size + Experience

File size

Experience {|~

2700 2750 2800 2850 2900
Sum of Square Errors (SSE)

Figure 7: The performance impact of the new experience
metric evaluated in cross-validation on the original data.

e We start with a reformulation of the original statistic test,
describing the effect of experience on defects as a basic lo-
gistic regression. This model is called Original and reports
that, comparable to the original work, the effect of the novel
experience on defects is positive and highly significant.

o The second model, called Control, adds the file size as a con-
trol metric. The effect of the experience drops by a factor of
ten (from 1.42 to 0.12). The effect stops being significant. This
conforms to our initial intuition that the study just proves a
confounding effect over file size and not the importance of a
new metric.

Even when evaluating the new metric in prediction, adding it
next to file size, as a new predictor, does not lead to an improvement.
Cross-validation results for prediction on the original data can be
found in Figure 7.

A simulation would have discovered this threat with the compu-
tation of the cosine and the insufficient methodology early.

8 CORRELATED VARIABLES (CASE 4)

The last study that we examine is by Jiarpakdee et al. [15]. The study
aims at methodological improvements when interpreting defect
models with correlated variables. The authors motivate the prac-
tice of removing variables based on correlation or VIF thresholds
(VIF [27]).

8.1 Original Methodology

In a nutshell, the original study compares model interpretation
on a data set with and without correlated variables. The authors
make statements on the practice of removing correlated variables,
comparing properties of the identified variables between:
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o different interpretation techniques and
o data sets with and without correlating variables.

We assume that it is sufficient to stay on this abstract level and
refer to the original study for details.

The important pitfall of the original work is that it does not ask
whether the identification of the unobserved variables is correct.
In a simulation, it is easy to show that the practice of automated
removal of correlated metrics does not improve the identification.
It may even worsen it.

8.2 Substitution E

In the following, we focus on a fully synthetic data set with the
variables X, Z, W and the resulting defects Y. We will simulate a
causal pattern where W is a confounding variable for the relation
between X and Y, while Z and W may get strongly correlated
depending on a simulation parameter.

1| # Alternative standard deviation of Z produces
different correlation strength between Z and W.
2| for (sdZ in seq(0, 1, length.out = 40)) {

] # Stochastic relationships between W, X and Z.
W<« rnorm(N)

X & rnorm (N, mean
Z « rnorm (N, mean

-W, sd = 1)
W, sd = sdZ)

8 prob «— 1 / (1 + exp(-(W + X)))
Y « rbinom (N, size = 1, prob = prob)

10 #

Listing 7: Simulating relationships, producing correlated
variables and defects.

In this simulation, no variable influences W. Variable W influences
X and Z. Both variables X and Z are given as stochastic functions
following a normal distribution, with the mean set to be W or —W.
Further, the stochastic function simulating Z is configured using
different values for the standard deviation. This means that with
decreasing standard deviation sdZ, the variable Z becomes a perfect
copy of W.

The final defects Y are produced as a stochastic function of X
and W. The variable Z is not related to defects.

8.3 Correspondence

We want to cover two scenarios: First, we are interested in the
effect of Z and W. Both effects are unobserved variables that we set
in the simulation. When running the logistic regression including
all variables, the identified effect of Z and W is correct until the
correlation reaches a threshold of about 0.9 (see Figure 8).

In this case, the original methodology of Jiarpakdee et al. should
kick in. We expect it to drop Z, since the variable Z is not related to
defects according to the simulation. However, this insight cannot
be made by using the correlation or VIF values, since both are
symmetric. A selection would be comparable to flipping a coin.

In a second scenario, we are interested in the effect of X. We
show the identified effect of X in models including variables Z,
W, none and both in Figure 9. The model not including W and Z
fails as it runs into confounding. The model, including all variables,
succeeds like the model deciding for W. The model using Z fails
up to the point that the correlation gets so high in that Z can be
used as a replacement for W.
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We see that neither dropping W nor Z makes sense, as the model
including both does a perfect identification of the effect of X. If we
decide between W or Z, we risk to drop the wrong variable.

Johannes Hartel and Ralf Lammel

8.4 Plausibility and Conclusion

The substitution that we show is a very basic causal pattern. We
can expect a study that recommends dropping correlated variables,
with the aim to improve interpretation of defect models, to exactly
resolve such issues. We do not expect the identification of variables
to get worse.

We are not aware of any substitution where the recommended
practice brings real benefits for an analysis. Even for prediction,
dropping correlated variables just decreases performance (corre-
sponding simulations are straightforward to implement).

We selected this work because we want to warn of the prac-
tice of automated dropping of variables, which should not become
standard practice in MSR/ESE, especially when interpreting defect
models. Which variables should be included, needs to be a con-
scious decision of the researcher. This conforms to recent statistic
guidelines (e.g., see [20], page 169).

9 RELATED WORK

The related work section covers other studies in MSR/ESE that can
benefit from simulation-based testing, work that already relates to
simulation, the use of simulation in other domains and test case
generation in software engineering.

9.1 Empirical Studies

We are not aware of empirical studies in MSR/ESE that test a
methodology by simulation and report on this. In the following,
we discuss some other studies that may potentially benefit from
simulation-based testing.

In [28], reasons for long duration builds in continuous integra-
tion pipelines are examined using multilevel models. Boh et al. [29]
shows an effect of experience on productivity using multilevel mod-
els. The authors of the previous papers are aware of the issues of
dependent observations using advanced solutions, not comparable
to the methodology shown in our first case (Sec. 5). However, multi-
level models are complicated. Our experience is that simulations can
be a great help in testing and understanding how multilevel models
react to the threat of a structured sampling process in MSR/ESE.

In [14], a multilevel (mixed-effect) defect model is fit, which is
over-parameterized. One can see this with some experience, looking
at the provided results in the paper. However, that the reported
amount of data does not suffice to identify the variables can also
be shown in a simulation.

Several works in MSR/ESE uses a methodology that assumes
completely independent observations and thereby invokes threats
(e.g., [26, 30, 31]). Such work may benefit from simulating the struc-
tured sampling process, and other reoccurring structural entities,
like artifacts and developers, for detecting the potential dangers.

There is work discussing aggregation or disaggregation strate-
gies on software engineering data [31, 32]. In simulations, it is
easy to show that aggregation artificially increases correlation.
Simulation-based tests may guide novel ideas on how to resolve is-
sues with correlated variables (Sec. 8), potentially by disaggregated
analysis of repository data.

Further, we assume that a series of work, relying on the well
known SZZ algorithm [3], may benefit from simulation-based test-
ing. Defect classification produced by SZZ is critically influenced
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by the sampling process, and the temporal evolution of commits in
a repository. Simulations of commit and fix behavior of developers
can easily uncover that SZZ classifications share a natural corre-
lation with time because for later commits, opportunities being
fixed are just getting rare. This can be considered as a systematic
measurement error. Hence, the effect of every metric correlating
with time, e.g., experience measures, may be confused with such
effect. It may be resolved in parts by the control of variables (Sec. 7)
Bird at al. [33] examine the empirical challenges of incorrectly
labeled bugs in historical defect data, which is an important threat
to following up methodology. Transferring this reference to our
terminology, a ‘fix’ is an observed variable, but the actual ‘bug’
is unobserved. We may simulate both to examine the impact of
different assumption on this relation. Bird at al. does an initial step
in the examination, but does not use synthetic fix-bug-pairs. This
makes forming a precise picture complicated (black-box of reality).
Authors of [34] report on the occurrence of well-known threats
in existing literature. Opposed to a plain literature survey, simulation-
based testing is a method to operationalize the relation between
threats, assumptions, and methodology that are not yet well-known.

9.2 Simulation

The distinction between simulation, inference, and prediction is
often vague. In the following, we list work in MSR/ESE that refers
to their own approach as simulation.

In [35-37], simulations of the software development process are
introduced to help project managers to extrapolate future scenarios.
Data mined from repositories is used to construct the simulations.
The authors use agent-based systems. In such case, simulations are
used to extrapolate, which is reasonable if configured with the right
prior knowledge on unobserved variables. In [38], agent-based sim-
ulations for OS development are created using prior literature to set
the relevant unobserved variables. In[39], multi-agent simulations
predict next moves of agents. In [40], social coding dynamics are
simulated based on historic data to forecast information spread.

In contrast to such work, our simulations operationalize threats.
A simulation should be used to test empirical practice in MSR/ESE
research, to spot cases where a methodology start to fail. Often, it
is not clear how a methodology reacts to assumptions before seeing
the consequences in a simulation.

9.3 Simulation in Other Domains

Statistic work evaluates cross-validation using a simulation study
in [41]. In [42], cross-validation is evaluated on simulated struc-
tural data in the field of ecology. In [43], the impact of random
effect structures is examined by simulation. The introduction to
Bayesian statistics in [20] or regression modelling in [44] contain
simulations as devices for illustration. In [45], the authors simulate
what happens if something informative is ignored, which is part of
longitudinal health data. We assume that temporal structure is also
critical for MSR and deserves more attention (for efforts in the lon-
gitudinal MSR data collection, see [46]). The authors of [47] discuss
simulation studies in medicine. The evaluation of statistic methods
by simulation is discussed by [48] (also in medicine). In [49, 50],
authors discuss the role of simulation in learning statistics. We
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discuss the role of simulations in operationalizing threats specific
to MSR/ESE studies.

9.4 Test Case Generation

Another related area is software testing, in particular, the generation
of test cases. For instance, grammars have been used to enumerate
test cases for compilers and language infrastructure [51-53]. Gen-
erating instances of metamodels to test corresponding methods can
be found in [54].

Simulation-based testing and test generation have in common
that the test space is highly parametric. Both try to systematically
spot the weak points in such space where methods potentially fail.

10 CONCLUSION

In this paper, we introduce simulation-based testing to operational-
ize the treatment of threats to validity, targeting the methodology
of quantitative studies in MSR/ESE. A simulation substitutes ob-
served and unobserved data, related to an MSR/ESE scenario, with
synthetic data, carefully defined according to plausible assumptions
on the scenario. Within a simulation, unobserved data becomes
transparent, which is the key difference to real studies, necessary
to detect threats to an analysis methodology.

We illustrate that simulation-based testing contributes to han-
dling threats to validity in four published MSR/ESE studies, using
very basic substitutions that, we believe, are plausible in MSR/ESE.
The simulations show that the original studies need to be im-
proved, assuming that our substitutions are plausible. In the end,
a simulation-based test is only as strong as its plausibility. This
needs to be rated by the reader or reviewer and is not the central
objective of this work.

We believe that simulation-based testing can assist future re-
search in MSR/ESE to resolve very persistent threats to validity,
that appear in several studies, by capturing them in an operational-
ized and systematic manner. Our future work will continue being
verified by simulation-based tests. We suggest equipping more stud-
ies with simulations as an additional quality check. Making such
threats more explicit is a step towards improving the scientific
process, to assure that future studies improve, and a contribution
against the reproducibility crisis.
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