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Abstract Empirical Software Engineering studies apply methods, like linear
regression, statistic tests, or correlation analysis, to better understand software
engineering scenarios. Assuring the validity of such methods and corresponding
results is challenging but critical. This is also reflected by quality criteria on the
validity that are part of the reviewing process for the corresponding research
results. However, such criteria are often hard to define operationally and thus
hard to judge by the reviewers.

In this paper, we describe a new strategy to define and communicate the
validity of methods and results. We conceptually decompose a study into an
empirical scenario, a used method, and the produced results. Validity can
only be described as the relationship between the three parts. To make the
empirical scenario fully operational, we convert informal assumptions on it
into executable simulation code that leverages artificial data to replace (or
complement) our real data. We can then run the method on the artificial data
and examine the impact of our assumptions on the quality of results. This may
operationally i) support the validity of a method for a valid result, ii) threaten
the validity of a method for an invalid result if assumptions are controversial,
or iii) invalidate a method for an invalid result if assumptions are plausible.

We encourage researchers to submit simulations as additional artifacts to
the reviewing process to make such statements explicit. Rating if a simulated
scenario is plausible or controversial is subjective and may benefit from involv-
ing a reviewer. We show that existing empirical software engineering studies
can benefit from such additional validation artifacts.
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1 Introduction

The reviewing process of empirical work is challenging because quality criteria
on the validity of methods and results are hard to define and communicate.
For example, the International Conference on Software Maintenance and Evo-
lution (ICSME) includes a dedicated category for empirical work. Calls-for-
papers in the years 2021, 2022, and 2023 include this statement to describe
the reviewing of such a category:

An empirical work is a ‘[...] paper in which the main contribution is the
empirical study of a software evolution technology or phenomenon. [...] The
authors should provide convincing arguments [...] why certain meth-
ods or models are needed. Such a contribution will be judged on
its study design, the appropriateness and correctness of its analy-
sis, and its discussion of threats to validity. Replications are welcome.’
(copy from the call-for-papers of ICSME 2021, 2022, and 2023)

Similar statements on the validity (or correctness) of work can be found
in other empirical fields. While reproducibility and replicability are somewhat
understood [20,74], standardized and operational ways to define and com-
municate the validity of methods and results, and the threats to it, are less
understood. An example of recent work that points out challenges of defining
and communicating threats, in the context of program comprehension experi-
ments, is [8]. Our paper focuses on this latter aspect.

1.1 Meta Research Questions

In this paper, we try to better understand the general problems related to the
validity of methods and results in empirical research with a focus on scenarios
coming from the field of Mining Software Repositories (MSR) and Empirical
Software Engineering (ESE). We hope that this effort also contributes to an
improved understanding in other empirical fields.

We derive the following meta research questions, that we later instantiate
for concrete empirical studies:

– RQ 1: What assumptions of ESE and MSR studies can be operationalized?
– RQ 2: What is the impact of such assumptions on the study results?

The first question asks for a more operational way of expressing assump-
tions about an empirical scenario. Such operational form can be helpful in the
communication and the reviewing process. This is the foundation to discuss
validity. The second question asks about the impact of assumptions on the
results of a study. This is relative to the method used to produce results and
alternatives to it.
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1.2 Relevance

Our research questions matter from an author and a reviewer perspective:
Authors of empirical research try to assess and explain the validity of their
empirical research. Reviewers need guidelines on what validation they should
search for in submissions.

1.3 A New Validation Strategy: Simulation-based Testing

This paper presents a new strategy that operationalizes statements about the
validity of empirical studies.

We operationalize assumptions on an empirical research scenario, typically
informal in a paper, by simulations that produce artificial data and results. The
impact of a used method on its results can be checked in such a transparent
setting.

We encourage researchers to submit simulation code as validation
artifacts in the reviewing process of empirical work to define and com-
municate properties related to the validity of their methods.

1.4 Meta-Validation

What we propose is a general strategy (or method) to validate methods and
results for a concrete empirical scenario. To provide a validation on our part, we
applied our general method to 6 real scenarios examined in published studies
in MSR and ESE. In each case, we instantiate our meta research questions
and show how we can answer them.

We prove that benefit can be expected by such additional valida-
tion artifacts. We show that we can either: i) support validity ii), threaten
validity, or iii) prove invalidity of the used methods and results by simulated
scenarios.

Data Availability Statement

All artifacts and data sets are provided online on GitHub1.

Contributions and Delta to the Conference Version

The following points describe the original contributions of the conference ver-
sion of this paper [33] and the delta of this journal version.

1 https://github.com/topleet/MSR2022
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– Conference 1: We contribute simulation-based testing as a general
strategy to operationalize statements about the validity of empirical re-
search.

– Conference 2: We contribute a first attempt at meta-validation show-
ing the relevance of simulation-based testing by applying it to published
research in MSR/ESE. We show what benefit can be expected for the val-
idation of concrete studies.

– Conference 3: We contribute an initial catalog of artifacts operational-
izing statements about the validity of MSR/ESE research. The artifacts are
available on GitHub.

– Journal 1: The journal version adds two empirical scenarios on top
of the four of the conference version. These additional scenarios add new
dimensions to the discussion. The first scenario shows how parts of the
results, created using an inappropriate method, can still be proven valid.
The second simulation shows empirical research conducting experiments,
thereby switching from observational to experimental research methods.

– Journal 2: We provide a stronger background on the motivation for
this work. This includes a positioning in the context of the reviewing pro-
cess of empirical work. The validation of methods and results is an essential
part of it. In particular, we introduce meta research questions, relevant for
reviewing, and instantiate them for concrete empirical studies to opera-
tionalize validation in a more uniform manner.

– Journal 3: We improved the introduction, structure, terminology
and description, based on the comments of the journal reviewers, and
misunderstandings that we spotted in discussions that took place, after the
publication of the conference version.

Roadmap

Sec. 2 starts with existing strategies for the validation of empirical work.
Sec. 3 provides an overview of our general validation strategy. Sec. 4 exer-
cises the strategy for a simple introductory example and shows how to write
simulation artifacts. Sec. 5 describes the common structure for apply-
ing simulation-based testing to MSR/ESE studies, as exercised in subsequent
sections, and summarizes the main insights. Sec. 6-11 provide the meta-
validation of the new strategy instantiating the meta research questions in
a number of MSR/ESE studies with complementary aspects of validity and
simulation. Sec. 12 presents a discussion of related work. Sec. 13 concludes
the paper.

2 Existing Validation Strategies for Empirical Research

We start with the discussion of existing strategies for the validation of em-
pirical work that come close to our general strategy. We add some known
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examples of empirical work where validation has gone wrong. This motivates
the complexity of validation.

The section can be skipped if a positioning in the context of reviewing and
validating empirical work is not of immediate interest upon first reading.

2.1 What is a Valid Method?

Reasoning about the validity of a method used in empirical research is hard:

– There might be trivial problems. An example of a study, where columns in
the data are accidentally flipped, is described in [51]. The authors needed
to withdraw five publications because of this mistake in their method. Such
trivial bugs might be a detail that nobody notices for years, but a detail
that changes the results dramatically. Nothing prevents researchers from
running into such problems.

– There might be more subtle problems. An instance is a study about cultures
with moralizing gods in the field of anthropology, criticized in [10]. Here,
a small difference in the method, in particular, on how to handle missing
values in historical records, leads to dramatic changes in the results. There
is no real solution to the problem, as discussed in [50] (page 512). Such
reasoning relates very plausible assumptions on the empirical scenarios,
in particular, about the origin of missing data, to the method and its
incapability of producing valid results.

What can be noticed in such discussions is that it is hard to
judge a method by its results. A comparison of methods might indicate
differences in the results, but differences alone cannot always tell something
about validity. An understanding of the empirical scenario is necessary for
claims on validity.

2.2 Typical Strategies

Typical strategies that may help with the validity of empirical work will be
listed next. The use of simulations is not established. The following list summa-
rizes our experience with validation strategies we spotted in past publications
of MSR/ESE.

– Intuition: Research in MSR/ESE is typically conducted, reviewed and
read by software engineers. This implies that all results and empirical sce-
narios can, to some extent, be judged by our intuition. We often see sections
in publications that trigger this, giving small anecdotes, and explaining
why particular results are intuitive or not. Some examples can be found
here [26,30,83,59,67,42,16]. The most characteristic text passage we may
find in papers is ‘. . . results confirms our intuition that . . . ’. However, such
judgment of results might be dangerous.
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– Authority: In some cases, authors may establish authority, which creates
an impression of validity. This may be done by an extensive discussion of
related work or referring to previous efforts done by the authors.

– Cookbook Methods: In several cases, claims on the validity of methods
(and parts of it) are outsourced by using previously established methods.
Papers list references to previous work, using the method too, to prove
validity. Established methods that have been used for a while, are for in-
stance, the events-per-variable (EPV), introduced in [58] and used as part
of MSR/ESE methods in [30,43,76,77,60], or AIC, introduced in [1], and
used in MSR/ESE method like [80,60,62,19,40]. However, if a methods
works out-of-the-box in a new empirical scenario is not always clear.

– Comparison Results: Examining the consistency of results with previous
work is also typical. This can be done by replication of previous studies,
or by a meta-analysis. Typically, studies are applied in a closely similar
scenario and on fresh data. An example is presented in [52], where a detailed
table makes explicit to which previous studies the new results conform
or not. Consistency is assumed to be a good sign in favor of a study.
Less formal replication, comparison, and confirmation of previous results,
located in the text, rather than in a table, can be found in [19,47,81].
However, whether consistency alone may be taken as a sign for a valid
study can be doubted. It may also be caused by the repeated application
of an invalid method.

– Comparison Methods: The comparison of methods may indicate a dif-
ference in the results. In specific cases, as in the case of a model comparison
(see the next item), the difference is meaningful. However, in general, such
a difference may not necessarily indicate which method is valid. Without a
clear understanding of the relation between the empirical scenario, method
and results, statements about validity are limited.

– Model Comparison Method: We consider the comparison of models
that are proxies for different hypotheses as one particular method. It is
maybe the most established and useful in empirical research. Here, a com-
parison selects between different models by preferring those that fit the
collected data best. Relevant part of such method is the protection against
over and under-fitting by cross-validation (used in [7,18,23,34,56]), infor-
mation criteria (used in [80,60,62,19,40]) or regularization (used in [57]).
Model comparison is well understood, but still limited. Model comparisons
can, for instance, be misleading when talking about causality. Non-causal
models are often preferred because they improve the fit. In general, asso-
ciating models and hypotheses is not trivial and might go wrong.

– Simulations: The use of simulation is a recent trend that is currently
starting to spread in teaching statistics [29,50]. According to our knowl-
edge, it is not a formal requirement in the reviewing process.

In this paper, we will go this new way of simulating empirical
scenarios and results to support or threaten the validity of methods
used in MSR and ESE.
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3 A New Validation Strategy: Simulation-Based Testing

This section introduces simulation-based testing to operationalize statements
about the validity of empirical research in MSR and ESE.

We call our strategy ‘simulation-based testing’ because of the
analogy between writing simulation artifacts and writing test
cases.

3.1 A Simplified Empirical Study

For a structured discussion, we decompose empirical research studies into i)
an empirical scenario, ii) a method, and iii) the results. This is a strong sim-
plification.

– The empirical scenario is the domain-specific and more ‘informal’ part of
a study that is the subject to research.

– The method consists of the steps to produce results.
– The results are non-trivial statements about the empirical scenario.

The following logic statement (that should not be read with formal am-
bitions) illustrates the argumentation on validity in many studies: ‘Valid as-
sumptions about the empirical scenario and a valid method imply valid results.’

empirical scenario ∧ method → results

Judging the validity of the results is often complicated and influenced by
expectations. Instead, researchers judge the assumptions about the empirical
scenario and the validity of the used method. Correct results are implied (→).
However, such argumentation requires a clear understanding of the relationship
between the three parts: How do the assumptions on the empirical scenario
and the method influence the results?

In this paper, we will show how to operationalize statements
about the validity in terms of the relationship between the assump-
tion about the empirical scenario, the method, and the results.

3.2 Variables and Relationships

In one form or another, an empirical study suggests a description of a data
generation process:

– Variables label relevant data for the research scenario. Typical variables in
MSR/ESE are the occurrence of defects, lines-of-code, or effect strengths.
The measurement of such variables matters: Some variables can be observed
(e.g., lines-of-code); some variables can only be observed with uncertainty
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(e.g., defects due to inaccuracy of SZZ [73]); other variables are conceptual
and thereby in principle unobserved. They can be inferred as the result of
an empirical study (e.g., effect strength of lines-of-code influencing defects).

– Relationships between variables describe how variables relate to each
other. Relationships may be functional or stochastic. The latter invokes a
notion of uncertainty. Uncertainty is handy, since we do not find exact rela-
tionships between variables. The direction of such relationships is relevant
for claims on causation and to describe a process. Temporal precedence of
variables sometimes limits the plausible directions in which a relationship
may operate. Relationships can never be measured directly.

Different algorithms can now use relationships to infer, predict,
identify, learn or simulate variables using other variables.

Depending on which variables are observed or not, how unobserved vari-
ables are treated, and which relationships are used, the names for the procedure
and the involved algorithms may differ:

– Algorithms may predict unobserved defects.
– Algorithms may infer, learn or identify unobserved parameters relevant to

a relationship. We stick to the term identify.
– Algorithms may simulate complete data sets following plausible assump-

tions on unobserved variables, like on the relationship between defects and
lines-of-code.

3.3 The Baseline Empirical Method

We now describe a common underlying method used in many empirical studies.
It is not part of our new strategy, but relevant to it. We describe it here to
make this discussion self-contained.

Studies often execute a variation of the following steps to arrive at the
results:

– A study’s method uses the toolbox of variables and relationships to de-
code hypotheses about the empirical scenario as ‘models’. There are of-
ten stereotypical ways of connecting variables by relationships, with well-
known names and algorithmic support. For instance, there are linear (re-
gression) models, logistic (regression) models, mixed-effect models, autore-
gressive models, or generalized additive models. These names just refer to
blueprints that still need to be customized.

– The data collection mines a sample, for instance repositories, to replace
some unobserved with observed variables.

– Algorithms attempt to identify the remaining unobserved variables in the
models.

– The identified unobserved variables, often called the parameters, and the
model that fits the data best is considered as the result of a study. Hy-
pothesis are discussed respectively.
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We can find comparable practice in the following papers [46,24,82,15,25,
68,53,85,43,55,63,88,87,78,80,76].

3.4 Simulation-Based Testing in a Nutshell

Judging the validity of such a method and variations of it is complicated
because it is connected to assumptions on the empirical scenario. To make
the assumptions transparent, we operationalize them in terms of a
simulation.

A simulation-based test replaces the real empirical scenario, in essence
the collected data, by a ‘simulation’ that reflects our assumptions about the
empirical scenario. The simulation produces artificial data.

The simulation-based test often works in an ‘opposite way’ when compared
to the original method. Instead of using the observed data to produce results,
it reverts the algorithms, and produces artificial data for given results. The
results can be purely fictional (or counterfactual) and are typically invented
for the purpose of simulation.

An empirical study’s original method, or any other method that potentially
applies, can be run on the simulated data.

The simulated empirical scenario, the method, and the results are now
transparent. The relationship can operationally be judged. The impact of our
assumption on the results can operationally be judged.

Possible Statements on Validity: Simulated scenarios operational-
ize statements about validity by describing the relationship between
(plausible or controversial) simulated empirical scenarios, (alternative)
methods, and the impact on the results. We have different options to
operationalize statements about validity:

– Supporting Validity: We want to show that for all plausible sim-
ulations (i.e., those likely to correspond to the real scenarios) our
method produces valid results.

– Threatening Validity: We accept that for some controversial sim-
ulations (i.e., those unlikely to correspond to the real scenarios) our
method produces invalid results.

– Invalidity: We do not accept that for a plausible simulation (i.e.,
one likely to correspond to the real scenarios) our method produces
invalid results.

Our paper encourages researchers to capture those kinds of statements
in simulations operationally. This may happen upfront to research or during
revisions.
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3.5 Explicit, Operational Assumptions

Running the method of the empirical study in reverse, capturing all its assump-
tions in simulation code, is not as trivial as it seems. It leads to non-trivial
insights, as we will show in the meta-validation section.

The simulation can ‘hard-code’ assumptions that are mostly implicit in
the original method of a study. The simulation can be explicit on the process,
given by the direction of relationships, on how the data is sampled from a
bigger population, on mechanisms that lead to missing data, on unobserved
data like the results, or on the way how measurement works.

This creates an operational and potentially parametrized simulation of our
assumed reality. For instance, a simulation may first simulate artificial data,
and then simulate different mechanisms on how parts of the data get lost. This
simulates problems with measurement. How a methods reacts to such data can
then be examined operationally by running the simulation and afterwards the
method on the produced artificial data.

3.6 Plausible and Controversial Simulated Scenarios

A simulated scenario can be considered as a complex but operational form of
an assumption.

We iterate plausible or controversial simulations to strengthen the method
by examining the impact on the results. Comparable to a regular assumption,
everything derived in that way is conditional on the plausibility. In this case, it
is the plausibility of the simulation that we deliver as an operational artifact.
Rating if simulations are plausible or controversial is often subjective and can
benefit from the involvement of reviewers. However, we now have an artifact
that supports such review and discussion.

When designing, reviewing, or revising a method, the aim should be to
stick to the most basic method, which is most resistant against the impor-
tant threats operationalized by simulations. A catalog covering simulations of
typical threats in MSR/ESE may help in such a case.
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4 A Simple Example: Logistic Regression For Defects

We start with a simple example of how a simulation may operationalize state-
ments on the validity of a method. We will check the application of a basic
logistic regression model, comparable to the method in many past and recent
studies on software defects (e.g., in [46,24,53,85,43,55,88,87,78]).

Technically, a simulation implements stochastic and functional relation-
ships between variables. It draws variables from random number generators
(stochastic) or produces variables according to basic mathematical functions
(functional). Such simulations boil down to very basic code.

Understanding the following section does not involve specific libraries or
extensive statistic background knowledge.

4.1 Original Method

A study that uses logistic regression to examine defects formulates a model
that describes the relationship between some observed variable X, typically
a software metric, and the observed defect Y . Both variables can be mined
from repositories. The results of such method improve the understanding of
the relationship, for instance, discussed in [46,24,53,85,43,55,88,87,78].

The most basic form of a logistic regression characterizes the relationship
in terms of two unobserved variables, identified using the observed X and Y
variable:

– Intercept (alpha): The intercept is an unobserved variable reflecting the
average probability of defects when X = 0.

– Slope (beta): The slope is an unobserved variable reflecting the change
in the probability of defects when X increases by one unit.

To exemplify this analysis, we borrow data from the elasticsearch project,
published in the context of examining defects in [24]. We use a binary defect
classification for our observed variable Y (computed according to SZZ [73]).
The variable X is the stated-log transformed lines-of-code changed by a com-
mit. For further details, we refer to the original study.

The code we use to invoke a logistic regression, in essence, an algorithm
that identifies alpha and beta using X and Y , is given in Listing 1:

1 model ← glm (Y ∼ X, f am i l y = b i nom i a l ( ) )

Listing 1 The original method applies a logistic regression to model the relationship
between X and Y (R code).

When running this code, it reports that the unobserved intercept is −3.28
and the slope is 0.45. From the perspective of the results, the interesting aspect
is the existence, the strength, the direction, and a potential causal nature of
the relationship between changed lines-of-code and defects. Because of the
positive slope (0.45), we may now conclude that commits with more changed
lines are more dangerous, as this increases the probability of defects.
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In such a trivial case, the method is often not further questioned. We trust
in the fact that we apply the logistic regression correctly, that the software
works, that we have enough data, and that our interpretation is valid, although
we have never seen the real relationship, and the real values of the unobserved
variables and compared them with our identified values −3.28 and 0.45.

We may implement additional checks by cross-validation. However, cross-
validation is an important remedy against overfitting, it does not resolve the
conceptual issue of not knowing the real intercept and slope.

4.2 Replacing the Empirical Scenario by a Simulation

We will now replace the real scenario with a simulation. In particular, this
means that we replace some (or all) observed and unobserved variables with
artificial counterparts, carefully simulated according to assumptions about the
real empirical scenario. We will capture this in an operational simulation ar-
tifact.

We provide the simulation code in Listing 2 and as an online resource. Com-
ments help to distinguish between scalars, vectors, and matrices. All simulation
code in the paper is written in standard R, not using advanced libraries.

1 # Kept ob se r v ed v a r i a b l e s .
2 N← N # Number o f commits .
3 X← X # ( v e c t o r ) Keep the o r i g i n a l v a r i a b l e X .
4

5 # Sub s t i t u t e d unobse rved v a r i a b l e s .
6 a lpha ← −3.0
7 beta ← 0 .4
8 prob ← 1 / (1 + exp (−( a l pha + beta ∗ X) ) ) # ( v e c t o r ) Assumption

o f the l o g i s t i c r e g r e s s i o n model on the r e l a t i o n between X
and Y.

9

10 # Sub s t i t u t e d obse r v ed v a r i a b l e Y .
11 Y← rbinom (N, s i z e = 1 , prob = prob ) # ( v e c t o r ) Assumption on

the output d i s t r i b u t i o n .

Listing 2 The simulation artifact: R code that replaces data used by the original method
(X and Y ) with artificial data.

The first three lines of Listing 2 denote that we keep the original variable X
and the number of observations N to stick close to the original data. However,
this is not necessary. We could also rely on fully artificial data.

Next, the code assigns the unobserved intercept and slope variable in terms
of alpha and beta. This is a crucial part of the simulation code, where the
unobserved variables that correspond to our results, get replaced by artificial
variables. We invent both values. We use slightly different values, compared
to those that are the result of the original study run, to point out the fictional
character of this replacement. We now use −3.0 for the intercept and 0.4 for
the slope. We will test alternatives in the next section more systematically.
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All the remaining code (line 8 and 11) directly follows the basic assump-
tions of a logistic regression on the relationship between X and Y (just run in
reverse). MSR/ESE studies (e.g. [46,24,53,85,43,55,88,87,78]) make this as-
sumption implicitly when using a logistic regression model; authors are aware
of this definition.

The code specifies the exact probability prob of facing a defect as a (logistic)
function of alpha, beta and X. This vector of exact probabilities is another
intermediate unknown that can never be observed. In reality, we can just
observe the final defect classification Y . We simulate defects Y by a stochastic
function producing uncertainty, a binomial distribution (rbinom) with one
trial and the probability set to the vector prob. It is a simple random number
generator2.

4.3 Running the Original Method on the Simulated Data

We can now process the artificial data (X and Y ) as if it were the real data,
using the original method from Listing 1 with one important difference: We
know alpha, beta, and prob.

4.3.1 Correspondence of the Results

The original method identifies the unobserved variables (the results we like
to interpret) in the simulated run to be alpha ≈ −2.97 and beta ≈ 0.39.
We can objectively support the validity of the method under the simulation
because the results alpha and beta are very close to those values set in the
simulation (−3.0 and 0.4). However, there are two remaining questions on such
correspondence.

4.3.2 Uncertainty of the Results

First, it is unclear why the method does not exactly meet the artificial alpha
and beta. It is because of the stochastic relationship used between prob and Y
(Listing 2, line 11). The method only observes Y , but the corresponding prob
is not known for sure; hence, also the identified values for alpha and beta are
uncertain.

If repeating the simulation, using different initial seeds for the used random
number generators, the identified alpha and beta distribute as depicted in
Fig. 1. This shows that on average, the identified alpha and beta variables
are excellent, but not totally exact. This is a reason many studies report on
confidence intervals and p-values.

2 In R, random number generators are vertorized and start with a letter r followed by an
abbreviation for the distribution family (we will see rbinom, rnorm and rpoisson).
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Fig. 1 Identified unobserved variables intercept (alpha) and slope (beta) by the method in
100 repeated simulation runs.

4.3.3 Parametrized Tests

Second, it is not clear what happens if we use different artificial values for
alpha and beta. The simulation can examine this by going through multiple
combinations of both, checking the impact of the method on its results.

The results for a grid of 30×30 combinations is shown in Fig. 2 (left). The
plot illustrates the impact of a particular combination of our assumptions,
operationally given by the artificial alpha and beta, on the difference between
the identified and the artificial beta. Such a difference can be interpreted as
an error in the identification done by the method. Fig. 2 (left) shows this as a
scatter plot. The assumptions in terms of artificial alpha and beta can be read
from the two axis, and the error is depicted by the red color of a dot. When
alpha and beta are both high or low, identification struggles, it produces a
high error (red dots). On the diagonal, e.g., when alpha is high and beta is
low, errors are low (white dots). We do not show the error in the identification
of alpha, but a plot can be derived in analogy.

The phenomenon is well-known. If counting the number of defects in the
artificial Y variable and relating it to this error, we see that the identification
only struggles on extremely high or low defect counts (see right of Fig. 2).

We know this under the name class-imbalance [75] or in terms of instruc-
tions on events-per-variable (EPV) [58]. Our simulation does detailed sugges-
tions, i.e., that if we have more than approximately 400 defects in the data
set, the method should be safe from the threat of too low defect counts. In
our real data set, we have 5771 defects, so we can deny the plausibility of this
simulated scenario, and thereby also the impact on the error in results.
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Fig. 2 Dots are repeated simulation runs. Left: Artificial alpha and beta and the error in
the identification, depicted as red dots (red increases with error). Right: The total sum of
defects in the artificial variable Y (log scale) and the relation to the error in the identification.

5 Meta-Validation

To provide a validation on our part, we apply simulation-based testing to six
real scenarios that are studied in MSR and ESE. We show what benefit can be
expected by simulations as additional validation artifacts. We show that we
can either i) support validity, ii) threaten validity, or iii) show the invalidity
of the used methods and results by simulated scenarios.

5.1 Section Structure

The following six sections will provide this meta-validation of simulation-based
testing (Sec. 6-11). These sections follow the structure:

– Research Question: We instantiate our meta research questions for a
particular empirical study. We discuss how we will answer the research
questions in the concrete case by a simulation artifact.

– Original Method: We describe the original method of a study (or of a
type of study) that may or may not have problems with validity.

– Simulated Scenarios: We describe how we replace the assumptions about
an empirical scenario, subject to the study, by one or more simulations of
the scenario. The simulation artifacts are provided online.

– Rating Results: We discuss the results provided by the original method
when applied to the simulated scenarios.

– Conclusions on Validity: We conclude on the validity of the original
method conditional on the plausibility of the simulations.

– Revision (Optional) We show how to improve the original method so
that it produces correct results for the simulated scenarios.
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5.2 Summary

We give a short sketch of the main findings and argumentation patterns
for the cases examined in this meta-validation.

– Dependent Observation (Sec. 6, Invalidity): We show that a used
method computes results with incorrect confidence intervals in a simulated
scenario where observations are dependent. Especially in MSR, observa-
tions are often sampled from the same repositories which may introduce
dependency. This is a plausible scenario, and thereby may invalidate parts
of the original study.

– Prediction or Causation (Sec. 7, Supports Validity): We show that
when using a logistic regression method, the results can also be interpreted
causally if the underlying simulated scenario is sufficiently basic. The simu-
lation supports the validity of the original study. We hint at limits and po-
tential improvements of the plausibility of the proposed simulation. We ex-
plain how extending simulations may also lead to simulations that threaten
claims on causation.

– Control of Variables (Sec. 8, Invalidity): We show that under a plausi-
ble simulation, a method to prove the relevance of a novel metric, produces
trivial and misleading results. This renders the method as invalid. We show
how to revise the method.

– Correlated Variables (Sec. 9, Invalidity): We show that under a series
of plausible simulations, a new method always fails to produce correct
results. No simulated scenario shows an improvement of the results. In some
scenarios, the quality of results even decreases. This renders the proposed
method as invalid.

– Distribution Types (Sec. 10, Supports Validity): We show that a
certain type of mismatch between method and simulated scenario does not
influence a certain interpretation of the results. The interpretation of the
original study is still valid. We support the validity.

– Experimental Research (Sec. 11, Supports Validity): We simulate
a random experiment and show the impact of some alternative methods
on the interpretation of results. We support the validity of such studies.

5.3 Acknowledgement

We want to acknowledge the original work of the authors in the studies, subject
to the following illustrations. All studies have been selected because of their
originality. However, we believe that this meta-validation of simulation-based
testing is not credible on unpublished examples. We need to continue on real
studies.
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6 Dependent Observation (Case 1)

After laying the foundations, we start with the first case for our meta-validation.
We examine a study by Alali et al. [2]. The work examines the ‘typical commit’.

6.1 Research Question

The original paper examines a research question, simplified as follows:

– RQ∗: What is the typical commit in a software repository?

In this paper, we are interested in operationalized statements about the
validity of the way the study attempts to answer this research question. We
instantiate our meta research questions for the study accordingly:

– RQ∗1: What assumptions of this study on repositories, commits, and prop-
erties of the typical commit can be operationalized?

– RQ∗2: What is the impact of such assumptions on the result of the study
regarding the properties of the typical commit?

We believe that most results of Alali et al. are valid. However, the study
runs into a specific problem, that we believe, is characteristic for the analysis
of repository data. The results include statements on uncertainty, while the
method ignores a potential structure in the analyzed sample of commits.

We will provide simulation artifacts that operationalize these assumptions,
and then show that they invalidate confidence intervals for the results.

6.2 Original Method

The original method of the study mines the history of nine open-source soft-
ware systems. It reports on the number of lines, files, and hunks changed by
commits. Further, the correlation between the variables is described.

Examining the ‘typical commit’ indicates that the resulting statements are
not necessarily specific to the nine observed repositories. Statements may also
hold for other repositories, those that the authors had in mind, but did not
examine due to computational overhead. Such sampling is standard practice
in MSR [22].

A method needs to produce results with a notion of uncertainty because
variables identified using the nine repositories might not exactly correspond
to values computed including the unobserved repositories. A method can give
such statements in terms of confidence estimates.

The method of Alali et al. report on confidence, i.e., p-values for the cor-
relation between the variables. In the remainder, we will leverage instead the
notion of confidence intervals, since p-values are less intuitive for most readers.
Problems with p-values are the same and can be shown the same way.

We assume that the original method computes p-values according to stan-
dard practice because the paper does not report on counteractions against
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dependent observations. In our reproduction of the original method, we also
stick to standard practice3.

6.3 Simulated Scenario A

The data of [2] is not available, so we simulate all the data of the empirical sce-
nario. We simplify the original research and examine the correlation between
just two variables X1 and X2.

Listing 3 shows simulated scenario A, which simulates two correlating vari-
ables in a structured sampling process.

1 X1a l l ← NULL # X1 c o l l e c t e d ove r r e p o s i t o r i e s .
2 X2a l l ← NULL # X2 c o l l e c t e d ove r r e p o s i t o r i e s .
3 N← 100 # Number o f r e p o s i t o r i e s .
4

5 f o r ( repo i n 1 :N) {
6 rho ← 0 .2 # Rho i s the same i n each r e p o s i t o r y .
7 M← 100 # Number o f commits i n each r e p o s i t o r y .
8 # S imu l a t i n g X1 and X2 f o r a r e p o s i t o r y .
9 X1 ← rnorm (M, mean = 0 , sd = 1)

10 X2 ← rnorm (M, mean = 0 , sd = 1)
11 # Produc ing the c o r r e l a t i o n ( rho ) .
12 s igma ← mat r i x ( c (1 , rho , rho , 1) , 2 , 2)
13 X← cb ind (X1 , X2) %∗% cho l ( s igma )
14 # C o l l e c t i n g X1 and X2 .
15 X1a l l ← c ( X1a l l , X [ , 1 ] )
16 X2a l l ← c ( X2a l l , X [ , 2 ] )
17 }

Listing 3 Simulating two correlating variables X1 and X2 for 100 repositories, each with
100 commits.

The code produces data for N=100 repositories, each with M=100 commits.
Within a repository (inside the loop), we simulated two variables X1 and X2
for M commits following a normal distribution (rnorm). A correlation between
X1 and X2 is simulated using the Cholesky decomposition with rho = 0.2.

Finally, we simulate the random sampling step (see the online resources for
the complete code). We randomly decide on 91 repositories where we consider
X1 and X2 as unobserved variables, and 9 repositories where we consider X1
and X2 as observed variables.

6.4 Simulated Scenario B

The assumption of dependent observations is added by a small modification
to simulated scenario A.

1 f o r ( repo i n 1 : 100 ) {

3 All our reproductions of other papers are fully available online to guarantee the repro-
duction of this paper.
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Fig. 3 Ten simulation runs showing confidence intervals for rho, identified based on 9
repositories (gray line), and rho computed on all 100 repositories (black dot). We distin-
guish between independent (left) and dependent observations (right) produced according to
simulated scenarios A and B.

2 rho ← rnorm (n = 1 , mean = 0 . 2 , sd = 0 . 23 ) # A r e p o s i t o r y −
s p e c i f i c v a r i a t i o n i n the c o r r e l a t i o n .

3 # . . .
4 }

Listing 4 Simulating a repository-specific variation in the correlation rho.

In simulated scenario B, the correlation rho is sightly different for each repos-
itory, but on average 0.2, since we draw it from a normal distribution with
mean 0.2. The standard deviation (sd) decides on the severity of the threat,
we set it to 0.23, but other configurations can be explored in the same fashion
as done in Sec. 4.3.3. Some values that cannot serve as a correlation rho need
to be filtered out. The rest of the simulated scenario is the same as in the
previous simulated scenario A.

6.5 Rating Results

The original method of Alali et al. [2], used to report on the uncertainty of
the results on the typical correlation, works under simulated scenario A, but
not under simulated scenario B. Repeating ten simulation runs suffice to show
this.

We compare the correlation (rho) computed on all 100 repositories, includ-
ing the unobserved, with the confidence interval identified according to the
original method on the 9 observed repositories. Since we report on confidence
intervals of 95%, 0.5 out of 10 simulation runs are allowed to fail. When hav-
ing a look at Fig. 3, we see that the number of failing confidence intervals is
different in both simulated scenarios:

– Under simulated scenario A (left), almost all confidence intervals include
the correct correlation.
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– Under simulated scenario B (right), we see that in 4 out of 10 simulation
runs, the method fails to include the correct correlation in the confidence
interval. The small variation regarding repositories has a big impact for
statements on uncertainty. The chance that our confidence interval includes
the correct correlation, is almost comparable to flipping a coin.

6.6 Conclusions on Validity

We have operationally defined the assumption of dependency in observations,
and then we have shown that it may invalidate the results produced by the
original method regarding uncertainty.

Indicators for the plausibility of simulated scenario B, compared to simu-
lated scenario A, can be found in every analysis that proves that repositories
are different (e.g., see the highly different slopes in regression models computed
on different repositories in [24,46]). We may even check such assumption on
dependency on the data (which we don’t have in this case).

The impact of our assumptions about the number of repositories N, and
the standard deviation sd can be explored by a parameterization of the simu-
lation. This may uncover that more repositories and lower standard deviations
decrease the error in computed confidence intervals.

6.7 Revision

General advice on improving the method can be guided by informing the model
of the structured sampling process. In the simulation above, we simplified. We
recommend casting the problem as a linear model, where slopes correspond to
the correlation we like to examine. The linear model can be evolved to a hier-
archical linear model, where the repository-specific impact on the correlation
can be identified as a random effect. The random effect may follow a normal
distribution and the standard deviation is thereby identified, too.

We recommend testing such models in simulations. We recommend work
on hierarchical/multilevel/mixed-effect models for guidance [28].

7 Prediction or Causation (Case 2)

The next case in our meta-validation examines an experience report by Tan-
tithamthavorn et al. in [76]. The report discusses challenges and actionable
guidelines when using methods for defect modelling.

We selected this work because of its progressive understanding of defect
modeling to be more than just defect prediction. We expect this report to have
a big impact on our community. However, this work fears to name one actual
challenge, which is examining causation. We will show how to sharpen this
understanding by simulations.
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7.1 Research Question

The original paper examines a research question, simplified as follows:

– RQ∗: What are the challenges and actionable guidelines when using meth-
ods from defect modeling?

We are interested in operationalized statements that complement such
guidelines. We instantiate our meta research questions for the study accord-
ingly:

– RQ∗1: What assumptions of this study on causes for defects in commits
can be operationalized?

– RQ∗2: What is the impact of such assumptions on the result of the study
when talking about causation?

We will accomplish the original study by simulation artifacts that sup-
port the validity of claims on causation. This sharpens the guidelines of Tan-
tithamthavorn et al.

7.2 Original Method

Practitioners may use an analytical defect model not just to predict defects,
but also to answer questions, like ‘whether complex code increases project risk’
(copy from [76]). Project risk refers to defects.

Within this setting, the term increases can be understood in different ways,
and the original study is unclear on this:

– Do we wish to compare or relate complex code with project risk? If so, we
can use this insight to (mentally) predict one variable using the other.

– Do we wish to know if modifying the complexity of code causes the project
risk to change? This insight is efficient to guide our decisions. It corresponds
to what most people have in mind when hearing the statement above.

Tantithamthavorn et al. and many other researches in MSR/ESE fear to
claim causation (second statement). This is not surprising. Causation is dif-
ficult to examine, definite claims are impossible, even in randomized experi-
ments.

On the other hand, most of the operational decisions should be driven by
causal relationships. Their examination is the crucial point of modern empir-
ical research (see the preface of [39]). Even more dramatically, statements on
the relation between complex code and project risk are intrinsically hard to un-
derstand if not aiming at causation. Understanding may get harder if a defect
model grows, without having causation in mind, including more variables.

Simulated scenarios are a useful extension to the original paper, since they
can make clear when claims on causation are valid.
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7.3 Simulated Scenario C

Following the definition of Imbens et al. [39] (page 6), a claim on causation
can unambiguously be given by comparing the potential outcomes of different
treatments in exactly the same situation. Reality does not allow observing
more than one potential outcome in the same situation, but a simulation-
based test allows synthesizing both.

1 X← rnorm (N) # Syn t h e t i c v a r i a b l e X .
2 # Produc ing two p o t e n t i a l p r o b a b i l i t i e s .
3 prob_pot1 ← 1 / (1 + exp (−( a l pha + beta ∗ X) ) )
4 prob_pot2 ← 1 / (1 + exp (−( a l pha + beta ∗ (X + 1) ) ) )
5 # Cor r e spond ing p o t e n t i a l d e f e c t s .
6 Y_pot1 ← rbinom (N, s i z e = 1 , prob = prob_pot1 )
7 Y_pot2 ← rbinom (N, s i z e = 1 , prob = prob_pot2 )

Listing 5 Simulating causation.

Listing 5 implements such simulated scenario, using ‘treatment’ X, but
also continuing with the modified X + 1, in exactly the same situation. The
relationships are the same as in the basics on logistic regression provided in
Sec. 4. In the simulation, we get two potential outcomes. According to the
definition, the difference between Ypot1 and Ypot2 reflects the causal relationship
between X and Y .

7.4 Rating Results

According to our previous strategy of hiding artificial but unobserved variables
from the original method, we run the original method just using one of the
potential outcomes, keeping the other hidden. However, the simulated scenario
shows that we can identify the causal relationship by the logistic regression
method.

Multiple runs of the simulation, with different artificial values for beta, show
that there is a clear correspondence between the identified beta using only the
observed variables, and the difference between both potential outcomes also
including unobserved variables (see Fig. 4).

7.5 Conclusions on Validity

We have provided operational assumptions about a scenario on causes for
defects, and did show the impact of such a scenario for claims on causation in
the context of the method examined in the original study.

Our simulation artifacts provide a clean notion of assumptions and the
implications on the validity of claims on causation. Our simulation artifacts
can be used to sharpen the guide by Tantithamthavorn et al., being more
precise on what the interpretation of defect models is.
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Fig. 4 Identifying causation under strong assumptions (simulated scenario C).

However, simulated scenario C may not be considered as the most plausible
scenario. In fact, it is very limited. It assumes the effect of X (beta) to be
stable across all our observations; no dependency between observations; X is
just a random variable, not influenced by anything else. The simulation may
be evolved based on these insights, and the results of methods can be checked
if they are valid claims on causation. This may render some threats to claims
on causation that we prefer to make explicit.

8 Control of Variables (Case 3)

In [81], the authors propose a new metric to reflect a developer’s ability to
correctly understand the code.

8.1 Research Question

The original paper examines a research question, simplified as follows:

– RQ∗: What is a metric that reflects a developer’s ability to correctly un-
derstand code?

We are interested in operationalized statements about the validity of the
method used to prove the relevance of the new metric. We instantiate our meta
research questions for the study accordingly:

– RQ∗1: What assumptions of this study on a new metric regarding the
developer’s ability to correctly understand code can be operationalized?
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– RQ∗2: What is the impact of such assumptions on the result of the study,
which is aimed at correctly proving relevance?

We show simulations for which the used method always proves relevance.
The simulation uncovers that the used method is incapable of producing neg-
ative results. This renders the method as invalid.

8.2 Original Method

The original method follows the standard in defect modeling as described
in Sec. 4. It relates the novel experience metric E to defects Y . Defects are
used as a proxy for a developer’s ability to correctly understand the code.
The method is slightly adapted because the authors show the relation using a
basic statistic test, rather than a logistic regression. The proof of the existence
or non-existence of such a relationship can be considered as the result of the
method.

The novel experience metric is defined using the cosine similarity between
files touched by a commit, and the lexical background of the contributing
developer (back). Defects may increase, as similarity decreases. This lexical
background is composed out of all modifications done by the developer in the
past. We refer to the original work for details on how to compute the exact
metric.

Our first intuition reading the original paper was that the technical com-
putation using the cosine may accidentally influence the results of the method.
We expected a potential correlation between the cosine and the file size.

This is a serious threat if we aim to interpret the fact that it is experience,
and not the file size, that influences defects. We know from works in MSR/ESE,
e.g., [52,24,46], and from Sec. 4, that the file size (or lines-of-code) strongly
relates to defects. Such confounding effect of the new experience metric over
variable files size would not be surprising and not much of interest. The new
metric would just be an overcomplicated proxy for file size.

8.3 Simulated Scenario D

This means that the method used in the study needs to protect against such
false claims on the existence of a relationship. We can write a simulation-based
test to check such a protection. This scenario simulates a part of the metric
computation to produce variable X and E using the cosine.

1 N← 8000
2 X← NULL
3 E ← NULL
4 f o r ( n i n 1 :N) {
5 nTerms ← 200
6 # Genera te two random term v e c t o r s .
7 back ← r p o i s ( n = nTerms , lambda = 5 . 0 )
8 f i l e ← r p o i s ( n = nTerms , lambda = 0 . 1 )
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9 # Compute the s i m i l a r i t y d e f i n i n g e x p e r i e n c e .
10 E ← c (E , c o s i n e ( back , f i l e ) )
11 # S i z e o f the f i l e .
12 X← c (X, l o g ( sum( f i l e ) + 1) )
13 }
14

15 a lpha ← −3.0
16 beta ← 0 .4
17 prob ← 1 / (1 + exp (−( a l pha + beta ∗ X) ) )
18

19 # Sub s t i t u t e d obse r v ed v a r i a b l e Y .
20 Y← rbinom (N, s i z e = 1 , prob = prob )

Listing 6 Simulating the computation of experience.

Listing 6 produces N artificial file and background pairs using vectors sam-
pled from a Poisson distribution (stochastic function). The number of terms
(nTerms) in the VSM is set to 200. The Poisson distribution works well for
simulating term vectors because it only produces discrete positive vector en-
tries. The average term frequency is set by the lambda parameters. The code
collects the new experience metric E defined by the cosine, but also the corre-
sponding file size X as the stated-log transformed sum of its terms (as often
assumed in defect modeling). Alternatives can easily be explored using the
online material. According to our knowledge, they do not influence our con-
clusions under simulated scenario D.

Finally, the code simulates the probability prob and the defects Y , as we
have done in the previous sections. In this simulated scenario, we assume that
there is no effect of E. This is clear from the code because E is not input to
the function producing prob.

8.4 Rating Results

The original method does not manage to handle the simulated scenario D
correctly. The Mann-Whitney test used in the original study rejects the null-
hypothesis (which it should not do according to our assumptions of the sim-
ulation) in approximately 45 out of 100 simulation runs at a confidence level
of 95%. That means that in 45 runs, it incorrectly detects the existence of
a relationship. Doing it in 5 runs would correspond to the confidence level.
Hence, the result is invalid.

The reason gets clear when looking at the raw data in Fig. 5, showing
a strong positive correlation between X (file size) and E (novel experience
metric). The very simplistic Mann-Whitney test accidentally attributes the
effect of X (file size) to E (novel experience metric). As expected, it is caused
by the technical computation of the cosine.
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Fig. 5 Relation between file size X and experience E computed by the cosine in a single
simulation run.

8.5 Conclusions on Validity

The previous simulated scenario operationally shows how a method is techni-
cally not suited to produce valid results. We show this in an important case
for the researchers, proving their new contribution to be wrong.

Simulated Scenario D is plausible enough in that we can demand a method
to resolve it. Claiming that a developer-specific factor relates to defects, while
it is essentially just the file size, does not provide a novel insight. This holds
for examining causation as well as for prediction.

8.6 Revision

Indeed, there are ways to improve the original method. We appreciate that the
original data is provided by the authors so that we can rearrange the statistical
checks.

We convert the original test (Mann-Whitney) into a logistic regression
model, which allows the control of variables. The control for the variable file
size is the mandatory step that resolved the threat to a method. It blocks the
confounding effect of the new experience metric over file size, in that we get
the direct effect of experience that we are interested in. Such a model indeed
succeeds in not detecting an effect on the artificial data produced by simulated
scenario D. See the online resources extending the simulation for this insight.

We now apply the method (with and without control) to the real data and
revise the original study. The relevant information on the logistic regression
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Table 1 A model with and without control applied to the real data, showing the effect
strength, the usual significance encoding, and AIC.

Variables Original Control
Experience 1.42∗∗∗ 0.12
File Size 0.01∗∗∗

AIC 19968 18282

Experience

File size

File size + Experience

2700 2750 2800 2850 2900

Sum of Square Errors (SSE)
Fig. 6 The performance impact of the new experience metric evaluated in cross-validation
on the original data.

models can be found in Table 1. For further details, we refer to the reproduction
code.

– We start with a reformulation of the original statistic test, describing the
effect of experience on defects as a basic logistic regression. This model
is called Original and reports that, comparable to the original work, the
effect of the novel experience on defects is positive and highly significant.

– The second model, called Control, adds the file size as a control metric.
The effect of the experience drops by a factor of ten (from 1.42 to 0.12).
The effect stops being significant. This conforms to our initial intuition
that the study just proves a confounding effect over file size and not the
importance of a new metric.

Even when evaluating the new metric in prediction, adding it next to file
size, as a new predictor, does not lead to an improvement. Cross-validation
results for prediction on the original data can be found in Fig. 6.

A simulation would have discovered this problem with the computation of
the cosine and the invalid method early.

9 Correlated Variables (Case 4)

The next study that we examine is by Jiarpakdee et al. [43]. The study aims
at showing a general improvement to methods interpreting defect models with



28 Johannes Härtel, Ralf Lämmel

correlated variables. The authors motivate the practice of removing variables
based on correlation or VIF thresholds (VIF [21]).

9.1 Research Question

The original paper examines a research question, simplified as follows:

– RQ∗: Can we improve the results of a method for defect modeling by a
threshold-based removal of correlated variables?

We are interested in operationalized statements about the validity of this
improvement of the method. We instantiate our meta research questions for
the study accordingly:

– RQ∗1: What assumptions of this study on the typical interpretations of
results and strong correlation between variables can be operationalized?

– RQ∗2: What is the impact of such assumptions on the result of the study,
which applies the new proposed variation of the method?

We will show that the proposed improvement to the method does not im-
prove the results in a series of plausible simulated scenarios. In some scenarios,
it even causes additional problems. We are not aware of a simulation that sup-
ports the validity in terms of showing that the improvement to the method
provides better results. The new method can be considered as invalid.

9.2 Original Method

In a nutshell, the original study claims that model interpretation methods,
that are run on data sets where correlated variables have been removed by
thresholds, provide better results. Strongly simplified, Jiarpakdee et al. sup-
port this claim by showing that both methods provide different results. We
refer to the original paper for the details on how the authors assume this
argumentation to work.

9.3 Simulated Scenario E

We will simulate a series of scenarios with strong correlation, and check if a
method that removes correlated variables leads to better results.

In the following, we focus on a fully artificial data set with the variables
X, Z, W and the resulting defects Y . We will simulate a causal pattern where
W is a confounding variable for the relation between X and Y , while Z and
W may get strongly correlated depending on a simulation parameter.

1 # A l t e r n a t i v e s t anda rd d e v i a t i o n o f Z produces d i f f e r e n t
c o r r e l a t i o n s t r e n g t h between Z and W.

2 f o r ( sdZ i n seq (0 , 1 , l e n g t h . out = 40) ) {



Operationalizing Validity of Empirical Software Engineering Studies 29

3 # St o c h a s t i c r e l a t i o n s h i p s between W, X and Z .
4 W← rnorm (N)
5 X← rnorm (N, mean = −W, sd = 1)
6 Z ← rnorm (N, mean = W, sd = sdZ )
7

8 prob ← 1 / (1 + exp (−(W + X) ) )
9 Y← rbinom (N, s i z e = 1 , prob = prob )

10 # . . .

Listing 7 Simulating relationships, producing correlated variables and defects.

In this simulation, no variable influences W . Variable W influences X and
Z. Both variables X and Z are given as stochastic functions following a nor-
mal distribution, with the mean set to be W or −W . Further, the stochastic
function simulating Z is configured using different values for the standard de-
viation. This means that with decreasing standard deviation sdZ, the variable
Z becomes a perfect copy of W .

The final defects Y are produced as a stochastic function of X and W . The
variable Z is not related to defects.

9.4 Rating Results

We want to cover two ‘interpretations’: First, we are interested in the effect of
Z and W . Both effects are unobserved variables that we set in the simulation.
When running the logistic regression including all variables, the identified ef-
fect of Z and W is correct until the correlation reaches a threshold of about
0.9 (see Fig. 7).

The improved method of Jiarpakdee et al. should resolve this. We expect
it to drop Z, since the variable Z is not related to defects according to the
simulation. However, this insight cannot be made by using the correlation or
VIF values, since both are symmetric. A selection would be comparable to
flipping a coin.

In a second ‘interpretation’, we are interested in the effect of X. We show
the identified effect of X in models, including variables Z, W , none and both
in Fig. 8. The model not including W and Z fails as it runs into the problem
with confounding. The model, including all variables, succeeds like the model
including W . The model using Z fails up to the point that the correlation gets
so high in that Z can be used as a replacement for W .

We see that neither dropping W nor Z makes sense, as the model including
both does a perfect identification of the effect of X. If we decide between W
or Z, we risk to drop the wrong variable.

9.5 Conclusions on Validity

The previous simulated scenario operationally shows how a proposed improve-
ment to a method does not improve results.



30 Johannes Härtel, Ralf Lämmel

0.75 0.80 0.85 0.90 0.95 1.00

-0
.5

0.
0

0.
5

1.
0

1.
5

2.
0

Correlation

Id
en

tif
ie

d 
E

ffe
ct

 W
 o

r 
Z

Identified effect of W (dot)

Identified effect of Z (cross)

Fig. 7 The identified effect of W and Z (which should be 1.0 and 0.0 respectively) under
different correlation.

The simulated scenarios that we show include a very plausible causal pat-
tern. We can expect a study that recommends dropping correlated variables,
with the aim of improving the interpretation of defect models, to exactly re-
solve such issues. We do not expect the results of a method to get worse.

We are not aware of any simulated scenario where the recommended prac-
tice brings real benefits for results. Even for prediction, dropping correlated
variables just decreases performance (corresponding simulations are straight-
forward to implement). This conforms to recent statistic guidelines (e.g., see [50],
page 169).
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Fig. 8 Models in simulation runs and the identified effect of X (which should be 1.0) under
different correlation and different control variables.

10 Distribution Types (Case 5)

The next example will focus on one of our previous works that is presented
in [68]. We will illustrate the implications of choosing the wrong output dis-
tribution for a regression model. It is a mistake that we did in [68].

10.1 Research Question

The original paper examines a research question, simplified as follows:

– RQ∗: What are the characteristic differences of repositories using SPARQL
and Cypher queries?
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We are interested in operationalized statements about the validity of re-
sulting statements. We instantiate our meta research questions for the study
accordingly:

– RQ∗1: What assumptions of this study on the differences between reposi-
tories using SPARQL and Cypher can be operationalized?

– RQ∗2: What is the impact of such assumptions on the result of the study,
regarding statements about the difference?

In this case, we show how parts of the results of an obviously wrong method
can still be valid under plausible assumptions.

10.2 Original Method

We will only focus on the parts of the method that run a regression model in
this section. Other elements of the method should also be reviewed within the
framework of the new strategy.

Originally, we used the regression model to better understand the deci-
sion of a software project between two alternative graph query languages,
SPARQL, and Cypher. The model tries to associate the decision between the
two languages with different properties of a project, i.e., with its age (cre-
ated_days_ago), the popularity (stargazer_count), the number of active de-
velopers working on graph queries (active_developers), and the active files that
include graph queries (active_files). In essence, the study results suggest that
SPARQL is preferred by projects that are older, more popular, more active,
and that have more files including graph queries.

In this section, we particularly focus on the output distribution of such a
model, which needs to reflect the decision between SPARQL and Cypher. It
thereby conforms to the binomial distribution with a single trial, where one
language (e.g., SPARQL) is represented by 1 and the other by 0. The model
thereby aligns with our previous discussion of defects.

Table 2 Parameters identified by different models that describe the decision for SPARQL:
The table shows the difference in identified parameters when using a linear or a logistic
regression model (normal vs. binomial output distribution).

Output Distribution Type Normal Binomial Normal Binomial
Variables Parameters Scaled Parameters
created_days_ago 0.040 0.187 0.935 0.860
stargazers_count 0.017 0.086 0.392 0.393
active_developers 0.117 0.498 2.731 2.287
active_files 0.060 0.515 1.405 2.365

Due to a lack of experience with such modeling practice at the time, we
decided to go for what, we believed, was the more established method. We
used the wrong output distribution. We used a linear regression and thereby a
normally distributed output. This is clearly a mistake. We provide the results
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of our original method on the original data, and a method using the improved
binomial output distribution type, in Table 2.

The middle part of the table illustrates our mistake. We can see that the
identified parameters differ for a model with normal and binomial output. For
instance, the variable created_days_ago has an effect of 0.040 for a normally
distributed output, while for a binomial output, we have an effect of 0.187.

However, our interpretation of the parameters, i.e., if a variable has a pos-
itive or negative effect on the decision for SPARQL, does not change. For
instance, older projects with a higher variable created_days_ago still seem to
prefer SPARQL. This consistent interpretation gets more obvious by scaling
the identified parameters of both models, dividing them by their standard de-
viation. On the right side of Table 2, showing the scaled parameters, we notice
that the results of the different models are very close to each other. Hence, if
ignoring the scale, our interpretation of them still appears to be almost correct.

10.3 Simulated Scenario F

We will examine this in detail, to show that it is the regular behavior, if making
this mistake, and not a fortunate coincidence. We start with producing a fully
artificial version of the problem.

We use this showcase as an opportunity to generalize the simulation for a
logistic regression, that we have developed so far, to a version with a flexible
number of variables M. This simulation applies to defect modeling the same
way.

1 N← 120 # Number o f r e p o s i t o r i e s .
2 M← 4 # Number o f v a r i a b l e s to examine .
3

4 Xs ← mat r i x ( rnorm (N ∗ M) , nrow = N, nco l = M) # Produc ing a N ∗
M mat r i x o f random no rma l l y d i s t r i b u t e d v a l u e s .

Listing 8 Simulating M variables for N repositories.

The previous code produces a matrix of artificial normally distributed vari-
ables. It contains N rows for the repositories to examine, and M columns that
store M variables for each repository. By adjusting N and M, we can change
the characteristics of this simulation.

Next, we need to produce the binary output that reflects the decision for
one of the two query languages, based on the variables in matrix Xs. In essence,
this is the same as previously presented for defects in Listing 2. However, we
need to change this code to operate on a matrix with a flexible number of
variables.

1 # Produc ing a v e c t o r o f M + 1 random betas , i n c l u d i n g one
v a r i a b l e f o r a random i n t e r c e p t .

2 be t a s ← rnorm (M + 1) # Random be ta s .
3

4 # Adding a column o f ‘ ones ’ a t the l e f t o f the matr ix , l a t e r
m u l t i p l i e d w i th the f i r s t beta and s e r v e s as i n t e r c e p t .
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5 Xs ← cb ind (1 , Xs )
6

7 # Matr i x m u l t i p l i c a t i o n ( ’%∗%’) o f Xs and betas , then app l y i n g
the l o g i s t i c f u n c t i o n .

8 prob ← 1 / (1 + exp (−(Xs %∗% beta s ) ) ) # The p r o b a b i l i t y
d e c i d i n g f o r one o f the two l anguage s .

9

10 # Produc ing a d e c i s i o n ( same as i n the p r e v i o u s s im u l a t i o n s ) .
11 Y← rbinom (N, s i z e = 1 , prob = prob )

Listing 9 Simulating the decision for M variables and N repositories.

Instead of setting alpha and beta as individual variables in the code (as done
in Listing 2), we generalize and use a vector called betas (line 2). This vector
includes the intercept alpha as its first entry. The vector is chosen randomly,
since we do not care about the particular effects of variables in the simulation.

As a convenient way to cope with the intercept alpha, which is somehow
special in not being multiplied with a corresponding variable, the matrix Xs is
extended by a column of ‘ones’ on the left (line 5). The matrix multiplication
(written % ∗%, line 8) then multiplies each variable (including the ones) with
the corresponding betas (including the intercept), forms the sum, and thereby
produces what is finally feed into the logistic function.

10.4 Rating Results

We can now examine the correspondence of betas identified by models using a
binomial and the wrong normal output distribution. Furthermore, we can do
this on simulated problems with a flexible number of variables and repositories.
We will limit us to M and N as set in the previous code. The parameters can
be explored systematically using the online resources.

In Fig. 9, we show six simulation runs that apply the wrong and the correct
model. In each gray block, we show a single simulation run, depicting the
simulated betas excluding the intercept (×), and the counterparts identified
by the logistic (•) and linear regression (◦). Simulated and identified variables
are scaled to have a standard deviation of 1.0 to make them comparable.

We see that simulated betas (×) are typically different from the identified
betas (• and ◦). This is not a surprise and reflects the discussion of uncertainty
(see Sec. 4.3.2). However, we also notice that the identified betas by both
models (• and ◦) are close to each other in the six runs, although one of the
two models uses a wrong output distribution that does not correspond to the
simulation.

10.5 Conclusions on Validity

In essence, this shows that we can trust the identified betas, and interpret
them, if ignoring their scale. The distribution type of the output is not relevant
for this particular statement that we did in our original work. This is an
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Fig. 9 Running simulations to explore the difference between logistic and linear regression
for the identification of betas.

interesting insight as is shows how methods behave if not exactly mirroring
the assumptions of the simulation.

However, we want to emphasize that other properties of the wrong model
will indeed be wrong. For instance, estimates of uncertainty for the betas will
be wrong. We can extend the simulation to show this.

The insights that we presented here conform to general statistic litera-
ture [21] (page 483). Extracting this cookbook instruction from literature and
transferring it to our MSE/ESE cases, when needed, is not easy. We produced
the same insights by a simulation-based test here.

11 Experimental Research (Case 6)

For the last example, we will switch to an experimental method, as an alterna-
tive to the analysis of existing data observed from repositories. Experimenting
provides major benefits, in particular, in the examination of causal relation-
ships [70]. This is because some assumptions on our scenario can be fixed
by the experiment’s design. Works on software engineering and ESE research
relies on this too [49,44,79,72,3–5,48,45,66].

11.1 Research Question

We ask a simplified research question that may be part of many experimental
studies in software engineering. This case does not correspond to a specific
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study but unifies aspects of the studies listed above. We ask a research ques-
tion, simplified as follows:

– RQ∗: Does our tool improve software development?

We are interested in operationalized statements about the validity of the
experimental results. We instantiate our meta research question for the study
accordingly:

– RQ∗1: What assumptions of the study on the design of an experiment for
testing a tool can be operationalized?

– RQ∗2: What is the impact of such assumptions on the result of the study,
regarding the improvement of software development by the tool?

In this section, will show two apects on validity:

– We emphasize the strength of experimental research in ESE by opera-
tionalized assumptions on the study design. In experimental research, some
assumptions are plausible by design, which is an interesting difference to
observational studies.

– We show the importance of methods delivering confidence estimates for
the interpretation of results, and basic insights of a power analysis.

We believe that even such basic discussion is important because experi-
ments are widespread (see instances like [3–5,48,45,66]). However, they are
also run by researchers that encounter this kind of practice for the first time.
The simulation of an experiment can help to raise a researcher’s confidence in
a correctly applied method and corresponding statistic devices, upfront to the
actual execution of the experiment.

11.2 Original Method

We stick to a basic experimental design to prove the benefit of a new tool. The
method that we follow can be considered as a simplified version of instances
found in related work, e.g., examining the effect of artifact formats [3], the role
of use cases [4], unit testing techniques [5], performance evaluation of software
architectures [48], textual vs. graphical software design descriptions [45], or
run-time configuration frameworks [66].

We are doing a randomized experiment with 20 subjects. We start with the
selection of the 20 subjects. Ideally, the subjects conducting our experiment
are representative of a population. What this means is hard to formalize, and
best described by the process on how the subjects are selected. We will ignore
aspects of sampling.

The experimenters then randomly assign each subject to the treatment or
control group. A subject may use our new tool as treatment, or an established
(or no) tool as control. We measure the outcome of the experiment in terms
of the time each subject needs. Depending on the group, this may be with or
without the new tool. Finally, we compute the difference in time, needed by
subjects in the treatment and control group.
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11.3 Simulated Scenario H

In the following simulation, we simulate the experiment producing an artificial
version, where our new tool improves how a subject handles a task. The time
needed is reduced by four minutes.

We will hard-code relevant parameters, like the number of subjects (20),
the effect of the tool (- 4 minutes), or the severity of difference in the subject’s
preconditions (given by a standard deviation of 5 minutes). We recommend
changing these parameters and exploring the implications based on the online
material to get a better understanding of the impact on results.

1 N← 20 # Number o f s u b j e c t s .
2 S ← rnorm (N, mean = 60 , sd = 5) # Unobserved p r e c o n d i t i o n s o f

s u b j e c t s .
3

4 # Randomly a s s i g n i n g t r ea tment and c o n t r o l .
5 G← sample ( c ( " t r ea tment " , " c o n t r o l " ) , N, r e p l a c e = T)
6

7 # The e f f e c t o f our t r ea tment .
8 X← i f e l s e (G == " t r ea tment " , −4, 0)
9

10 # Composing the t ime tha t a s u b j e c t a c t u a l l y needs .
11 Y← S + X

Listing 10 Simulating a randomized experiment.

In a first step, the code decides on the number of subjects N (line 1).
We simulate the preconditions of subjects as the unobserved variable S, i.e.,
the time a subject would need for the task ignoring tool support. We use a
stochastic function following a normal distribution with a mean of 60 minutes
and a standard deviation of 5 minutes (line 2). We thereby have artificial
subjects as unobserved preconditions S.

Following the standard method of randomized experiments, we now ran-
domly assign our subjects to treatment and control group. We use the stochas-
tic function sample to do such random assignment to treatment or control (line
5). We store it as observed variable G. We then simulate the effect of our new
tool X for the assignments, as a function of G, using a basic ifelse (line 8).
We make our treatment (new tool) decrease the time needed by exactly four
minutes.

Here we face an important difference to our previous definitions of X, e.g.,
in Sec. 7, since we can assure by the design of the experiment, that G, and
thereby also X, is independent of anything else.

Finally, we simulate running the experiment, producing the time Y as the
sum of X and S (line 11). The time is decreased by our treatment but still
influenced by each subject’s unobserved precondition.
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Fig. 10 Repeating the simulated experiment and interpreting the plain difference between
treatment and control group.

11.4 Rating Results

Obviously, we should recognize that the experiment is a success by just looking
at the difference between treatment and control group’s average time needed
for the task. Our simulation clearly defines that the treatment (the tool) de-
creases the time by four minutes.

However, the simulated random preconditions of subjects will complicate
showing the success of our tool. We can illustrate the invalidity of an over-
simplistic method that only interprets the difference between treatment and
control group, by repeating the simulated experiment many times. We record
plain difference between treatment and control (see online resources) and re-
port on it in the histogram in Fig. 10.

Fortunately, most of the simulated experiments suggest that our new tool
is indeed a success. Often, we almost exactly meet the −4 minutes. However,
there are also cases where we run into simulated experiments that suggest that
the new tool slows down the task. We know that this is not the case, since the
simulation is fully transparent.

The reason behind these cases are unlucky assignments of subjects to treat-
ment and control, where the majority of the subjects with good preconditions
concentrate on the control group. This is something that happens. There is no
way to resolve this problem, without a better observation of the preconditions
(which is often impossible).

11.5 Revision

We will now show the conceptual remedy, that resolves this problem by rea-
soning about the uncertainty associated with the preconditions of the subjects.
It is the typical device of a t-test or confidence interval, that almost all studies
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Fig. 11 Showing 10 simulated experiments and the corresponding uncertainty for the dif-
ference between treatment and control. The black dot reflects the simulated difference, the
gray dot the difference that we find, and the gray bar the 95% confidence interval around
the difference.

doing experiments are aware of. We again focus on confidence intervals, which
we believe are more intuitive for most readers.

Instead of interpreting the plain difference that we find between treatment
and control group, we now prefer to interpret a confidence interval around this
difference. We illustrate this in Fig. 11 in the same way as we have done it
previously in Sec. 6. The confidence intervals for 10 simulation runs uncover
two important insights:

– First, we resolve the threat of accidentally claiming a wrong effect of our
tool. In all simulation runs, we see that the confidence interval includes the
simulated effect of our tool −4. When running the actual experiment, we
can thereby be sure that that our statement, which is now less accurate
by including a notion of uncertainty, is valid in claiming the success of our
tool under the simulated assumptions.

– However, we spotted a new problem. Most of our confidence intervals (8 out
of 10) suggest that we cannot be sure that our tool has an influence at all
because the 0 is included in the intervals. Some people say that we missed
rejecting the null hypothesis. This operationalizes invalidity of statements
about the ‘absence of an improvement by our new tool ’. The simulation
states that the effect is there. If we claim absence because of a confidence
interval that included the 0, we are wrong. This may happen for about 80%
of the runs, but we can decrease the chance. For instance, by increasing the
number of subjects, the confidence intervals will get more narrow and the
80% will decrease. We do this until we think the chance is small enough to
be accepted. If we now still face a confidence interval including the 0, the
effect of our tool may be truly negligible. We face an instance of a power
analysis based on a simulation.
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11.6 Conclusions on Validity

The important property of such experiment is that the independence of the
assignment to treatment and control can be assured by the design of the ex-
periment. We operationalize this assumption in our simulation.

As the consequence, this assures the independence of the effect of the tool
used in the experiment (the effect that we are actually interested in). We can
continue to reason about causation, as sketched in Sec. 7, while having the
most relevant assumption in the simulation plausibly being assured by our
design. There is no need to control for variables, as required in Sec. 8.

Furthermore, this example again revisits aspects of uncertainty, first pre-
sented in Sec. 4.3.2, and refined in the context of dependent observations
in Sec. 6. However, having dependent observations in experimenting is not
completely implausible. Subjects might influence each other when running the
experiment in the same room, or we might design the experiment so that
we measure the same subject executing multiple tasks. Such dependent ob-
servations require advanced methods, e.g., subject-item designs, examined in
simulations in [6].

We also distinguished between claiming the existence and non-existence
of effects. We show a basic version of a power analysis by a simulation. We
recommend exploring the online material, adjusting N, the effect of the tool,
or the severity of difference in the subject’s preconditions given by the stan-
dard deviation for simulating S, to examine the impact for resulting claims on
existence and non-existence.

12 Related Work

The related work section covers other studies in MSR/ESE that can benefit
from simulation-based testing, work that already relates to simulation and the
use of simulation in other domains.

12.1 Empirical Studies

We are not aware of MSR/ESE research that tests a method by simulation
and reports on this. In the following, we discuss some other studies that may
potentially benefit from simulation-based testing.

In [30], reasons for long duration builds in continuous integration pipelines
are examined using multilevel models. Boh et al. [14] show an effect of expe-
rience on productivity using multilevel models. The authors of the previous
papers are aware of the issues of dependent observations using advanced solu-
tions, not comparable to the method shown in our first case (Sec. 6). However,
multilevel models are complicated. Our experience is that simulations can be
of great help in testing and understanding how multilevel models react to the
threat of a structured sampling process in MSR/ESE.
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Several works in MSR/ESE use a method that assumes completely inde-
pendent observations and thereby invokes threats (e.g., [61,81,86]). Such work
may benefit from simulating the structured sampling process, and other re-
occurring structural entities, like artifacts and developers, for detecting the
potential dangers.

In the conference version of this paper, we have raised the concern that the
model used by Yan et al. in [85] may be over-parametrized and therefore does
not fit properly. Meanwhile, initial simulations of us did not manage to show
this. The model works in a simplified version of the presented scenario. We do
not want to make any further claims on the validity of this study without an
in-depth study by simulations. However, this mistake by us again shows the
relevance of our more operational ways of examining validity by simulations.

There is work discussing aggregation or disaggregation strategies on soft-
ware engineering data [86,35]. In simulations, we have managed to show that
aggregation artificially increases correlation. Simulation-based tests may guide
novel ideas on how to resolve issues with correlated variables (Sec. 9), poten-
tially by disaggregated analysis of repository data. This is a promising direction
for future work.

Further, we assume that a series of work, relying on the well known SZZ
algorithm [73], may benefit from simulation-based testing. Defect classification
produced by SZZ is critically influenced by the sampling process, and the
temporal evolution of commits in a repository. Simulations of commit and fix
behavior of developers may uncover that SZZ classifications share a natural
correlation with time because for later commits, opportunities being fixed
are just getting rare. This can be considered as a systematic measurement
error. Hence, the effect of every metric correlating with time, e.g., experience
measures, may be confused with such an effect. It may be resolved in parts by
the control of variables (Sec. 8)

Bird at al. [12] examine the empirical challenges of incorrectly labeled bugs
in historical defect data, which is an important threat to following up steps of
a method. Transferring this reference to our terminology, a ‘fix’ is an observed
variable, but the actual ‘bug’ is unobserved. We may simulate both to examine
the impact of different assumptions on this relation. Bird at al. does an initial
step in the examination, but does not use synthetic fix-bug-pairs. This makes
forming a precise picture complicated.

Authors of [64] report on the occurrence of well-known threats in existing
literature. Opposed to a plain literature survey, simulation-based testing is a
strategy to operationalize statements about the relationship between empirical
scenario, method, and results.

12.2 Simulation

The distinction between simulation and prediction is often vague. In the follow-
ing, we list work in MSR/ESE that refers to their own approach as simulation.
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In [37,38,36], simulations of the software development process are intro-
duced to help project managers to extrapolate future scenarios. Data mined
from repositories is used to construct the simulations. The authors use agent-
based systems. Simulations are used to extrapolate, which is reasonable if
configured with the right prior knowledge on unobserved variables. In [69],
agent-based simulations for OS development are created using prior literature
to set the relevant unobserved variables. In [13], multi-agent simulations pre-
dict the next moves of agents. In [11], social coding dynamics are simulated
based on historic data to forecast information spread.

In contrast to such work, our simulations operationalize statements on the
validity of a study. A simulation should be used to test empirical practice
in MSR/ESE research, to spot cases where a method fails or is threatened.
Often, it is not clear how a method reacts to assumptions before seeing the
consequences in a simulation.

12.3 Simulation in Other Domains

An exhaustive discussion of the use of simulations in other domains is beyond
the scope of this paper. However, we list some selected and influential work
here.

Statistic work evaluates cross-validation using a simulation study in [71].
In [65], cross-validation is evaluated on simulated structural data in the field
of ecology. In [9], the impact of random effect structures is examined by sim-
ulation. Subject-item designs are examined in simulations in [6].

The introductions to statistics in [50,29,31] contain simulations as central
devices for illustration. Most notably, such a trend is reflected in the book
by Gelman et al. from 2020, where the preface states: ‘Existing textbooks on
regression typically have some mix of cookbook instruction and mathematical
derivation. We wrote this book because we saw a new way forward, focusing
on understanding regression models, applying them to real problems, and us-
ing simulations with fake data to understand how the models are fit.’ (direct
citation of [29])

In [27], the authors simulate what happens if something informative is ig-
nored, which is part of longitudinal health data. We assume that temporal
structure is also critical for MSR and deserves more attention (for efforts in
the longitudinal MSR data collection, see [32]). The authors of [17] discuss
simulation studies in medicine. The evaluation of statistic methods by simu-
lation is discussed by [54] – also in medicine. In [41,84], authors discuss the
role of simulation in learning statistics.

13 Conclusion

This paper describes and validates a new strategy to validate methods and
results of empirical research studies. While reproducibility and replicability
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are somewhat understood, standardized and operational ways to define and
communicate such validity of empirical research studies are less understood.

Our strategy operationalizes important assumptions, that are typically in-
formal in papers, by simulations. We use the simulations to show how the
assumptions impact the results of a study. We call the strategy simulation-
based testing because of the analogy between writing simulation artifacts and
test cases.

In a (meta) validation, we show how simulation-based testing instantiates
research questions on the validity of studies in six real scenarios. We show that
we can either support validity, threaten validity, or invalidate studies.

We encourage researchers to accompany submissions of research works with
simulation artifacts, thereby proving the status of an operationalized valida-
tion; thereby, helping reviewers in assessing validity. In this way, the reviewing
process of future empirical work would be improved.
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